List of largest exoplanets
Below is a list of the largest exoplanets so far discovered, in terms of physical size, ordered by radius.
Limitations
[edit]This list of extrasolar objects may and will change over time due to diverging measurements published between scientific journals, varying methods used to examine these objects, and the notably difficult task of discovering extrasolar objects in general. These objects are not stars, and are quite small on a universal or even stellar scale. Then there is the fact that these objects might be brown dwarfs, sub-brown dwarfs, or not exist at all. Because of this, this list only cites the most certain measurements to date and is prone to change.
List
[edit]The sizes are listed in units of Jupiter radii (RJ, 71 492 km). This list is designed to include all planets that are larger than 1.6 times the size of Jupiter. Some well-known planets that are smaller than 1.6 RJ (17.93 R🜨 or 114387.2 km) have been included for the sake of comparison.
* | Probably brown dwarfs (≳ 13 MJ) (based on mass) |
---|---|
† | Probably sub-brown dwarfs (based on mass and location) |
? | Uncertain status (inconsistency in age or mass of planetary system) |
← | Probably exoplanets (≲ 13 MJ) (based on mass) |
→ | Planets with grazing transit, hindering radius determination |
# | Notable non-exoplanets reported for reference |
– | Theoretical planet size restrictions |
Artist's impression | |
---|---|
Artist's size comparison | |
Artist's impression size comparison | |
Direct imaging telescopic observation | |
Direct image size comparison | |
Composite image of direct observations | |
Transiting telescopic observation |
Illustration | Name (Alternates) |
Radius (RJ) |
Key | Mass (MJ) |
Notes |
---|---|---|---|---|---|
Sun (Sol) |
9.731 (1 R☉)[5] (695 700 km) |
# | 1047.569 (1 M☉)[5] (1.988 416 x 1030 kg) |
The only star in the Solar System. Responsible for life on Earth and keeping the planets on orbit. Age: 4.6 Gyr.[6] Reported for reference. | |
Maximum size of Planetary-mass Object | 8[7] | – | ~ 5[7] | Maximum theoretical size limit assumed for a ~ 5 MJ mass object right after formation, however, for 'arbitrary initial conditions'. | |
Proplyd 133-353 | ≲ 7.82 ± 0.81[8][a] (≲ 0.804 ± 0.083 R☉) |
† | (≲) 13[8] | A candidate sub-brown dwarf or rogue planet with a photoevaporating disk, located in the Orion Nebula Cluster. At a probable age younger than 500 000 years, it is one of the youngest free-floating planetary-mass candidates known.[8] More information about Proplyd 133-353 and estimates of its radius are available:[f] | |
2M0535-05 A (V2384 Orionis A) |
6.71 ± 0.11[9] (0.690 ± 0.011 R☉) |
# | 59.9 ± 3.5[9] (0.0572 ± 0.0033 M☉) |
First eclipsing binary brown dwarf system to be discovered, orbiting around 9.8 days.[10][11] Age: ~1 Myr.[12] Reported for reference. | |
2M0535-05 B (V2384 Orionis B) |
5.25 ± 0.09[9] (0.540 ± 0.009 R☉) |
# | 38.3 ± 2.3[9] (0.0366 ± 0.0022 M☉) | ||
KPNO-Tau-4 | 4.1[13][14] | † | 10.5[13] | A member of Taurus-Auriga star-forming region.[14] | |
GQ Lupi b (GQ Lupi Ab, GQ Lupi B) |
3.77[15] | * | 20 ± 10;[16] 1 – 46[17] |
Second exoplanet to be directly imaged (after 2M1207 b). GQ Lupi b has a mass of 1 – 46 MJ; in the higher half of this range, it may be classified as a young brown dwarf. It should not be confused with the star GQ Lup C (2MASS J15491331), 2400 AU away, sometimes referred to as GQ Lup B.[18] Other sources of the radius include 3.7±0.7 RJ,[19] 3.0±0.5 RJ,[17] 3.5+1.50 −1.03 RJ,[20] 4.6 ± 1.4 RJ, 6.5 ± 2.0 RJ.[21] | |
HD 100546 b (KR Muscae b) |
3.4[22] | * | 25[22] | Sometimes the initially reported 6.9+2.7 −2.9 RJ for the emitting area due to the diffuse dust and gas envelope or debris disk surrounding the planet[23] is confused with the actual radius. Other source of mass: 1.65 MJ.[24] HD 100546 (KR Mus) is the nearest Herbig Be star to the Sun.[25] | |
2MASS J0437+2331 | 3.30[26][g] | † | 7.1 +1.1 −1.0[26] |
May be a sub-brown dwarf or a rogue planet | |
OTS 44 | 3.2 – 3.6[27] | † | 11.5[28] | First discovered rogue planet; very likely a brown dwarf[29] or sub-brown dwarf.[30] It is surrounded by a circumstellar disk of dust and particles of rock and ice. The currently preferred radius estimate is done by SED modelling including substellar object and disk model.[27] | |
2M J044144 b (2M 0441+23 Bb) |
3.06[31][g] | † | 9.8 ± 1.8[31] | Based on the mass ratio to 2M J044145 A (2M 0441+23 Aa) it is likely not a planet according to the IAU's exoplanet working definition.[32] Part of the lowest mass quadruple 2M 0441+23 system of 0.26 M☉.[33] | |
Kapteyn's Star | 2.83 ± 0.24[34] (0.291 ± 0.025 R☉) |
# | 294.4 ± 14.7[34] (0.2810 ± 0.014 M☉) |
The closest halo star and nearest red subdwarf, at the distance of 12.82 ly (3.93 pc), and second-highest proper motion of any stars of more than 8 arcseconds per year (after the Barnard's Star). Age: 11.5 +0.5 −1.5 Gyr.[35] Reported for reference. | |
AB Aurigae b (AB Aur b) |
< 2.75[36][h] | * | 20 (~ 4 Myr),[37] 10 – 12 (1 Myr), < 130[36] |
Likely a brown dwarf; Assuming a hot-start evolution model and a planetary mass, AB Aurigae b would be younger than 2 Myr to have its observed large luminosity, which is inconsistent with the age of AB Aurigae of 6.0 +2.5 −1.0 Myr, which could be caused by delayed planet formation in the disk.[38] Other system ages include 1 - 5 Myr,[36] 4 ± 1 Myr[39] and 4 Myr.[40] Another source gives a higher mass of 20 MJ in the brown dwarf regime for an age of 4 Myr, arguing since gravitational instability of the disk (preferred formation mechanism in the discovery publication)[36] operates on very short time scales, the object might be as old as AB Aur.[37] A more recent study also support the latter source, given the apparent magnitude was revised upwards.[41] | |
DH Tauri b (DH Tau b) |
2.7 ± 0.8[21] | ← | 11 ± 3[21] | First planet to have a confirmed circumplanetary disk, detected with polarimetry at the VLT[42] and youngest confirmed planet at an age of 0.7 Myr.[19] DH Tauri b is suspected to have an exomoon candidate orbiting it every 320 years, with about the same mass as Jupiter.[43] Other sources give the radii: 2.6±0.6 RJ,[19] 2.49 RJ[27][g] and masses: 14.2 +2.4 −3.5 MJ,[44] 17 ± 6 MJ,[45] 12 ± 4 MJ.[19] | |
CT Chamaeleontis b (CT Cha b) |
2.6 +1.2 −0.2[27] |
* | 17 ± 6[46] | Likely a brown dwarf. | |
CM Draconis A (Gliese 630.1 Aa) |
2.4437 ± 0.0002[47] (0.25113 ± 0.00016 R☉) |
# | 235.8 ± 0.3[47] (0.225 07 ± 0.000 24 M☉) |
One of the lightest stars with precisely measured masses and radii, orbiting around 1.268 days. Age: 4.1 ± 0.8 Gyr.[48] Reported for reference. | |
PZ Telescopii b (PZ Tel b) |
2.42 +0.28 −0.34[49] |
* | 27 +25 −9[50] |
Likely a brown dwarf. First possible extra Jupiter-like planet to be directly imaged[51] | |
CM Draconis B (Gliese 630.1 Ab) |
2.3094 ± 0.0001[47] (0.23732 ± 0.00014 R☉) |
# | 220.2 ± 0.3[47] (0.210 17 ± 0.000 28 M☉) |
One of the lightest stars with precisely measured masses and radii, orbiting around 1.268 days. Age: 4.1 ± 0.8 Gyr.[48] Reported for reference. | |
TWA 29 | 2.222 +0.082 −0.081[52] |
† | 6.6 +5.2 −2.9[52] |
Rogue planet | |
Hot Jupiter limit | 2.2[53] | – | > 0 | Theoretical limit for hot Jupiters close to a star, that are limited by tidal heating, resulting in 'runaway inflation' | |
XO-6b | 2.17 ± 0.2[54] | ← | 4.47 ± 0.12[54] | A very puffy Hot Jupiter | |
PSO J077.1+24 | 2.14[26][g] | † | 5.9 +0.9 −0.8[26] |
Rogue planet | |
CAHA Tau 1 | 2.12[55][56][g] | † | 10 ± 5[55][56] | Rogue planet | |
ROXs 42B b | 2.10 ± 0.35[19] | ← | 9 +6 −3,[57] 10 ± 4[58] |
Older estimates include 1.9 – 2.4, 1.3 – 4.7 RJ[59] and 2.43±0.18, 2.55±0.2 RJ.[60] Other recent sources of masses include 3.2 – 27 MJ,[61] 13 ± 5 MJ.[19] | |
HAT-P-67b | 2.038 +0.068 −0.038,[54] 2.165 +0.024 −0.022[i][62] |
← | 0.418 ± 0.012[54] | A very puffy Hot Jupiter. Was the largest known planet with an accurately and precisely measured radius[63] (2.085 +0.096 −0.071 RJ),[64] until a new estimate revised its radius in 2024.[62][54] | |
HATS-15b | 2.019 +0.202 −0.160[65] |
← | 2.17 ± 0.15[65] | ||
Cha 110913-773444 (Cha 110913) |
2.0 – 2.1[27] | † | 8 +7 −3[66] |
A rogue planet/sub-brown dwarf that is surrounded by a protoplanetary disk, the first one to be confirmed. It is one of youngest free-floating substellar objects with 0.5–10 Myr. The currently preferred radius estimate is done by SED modelling including substellar object and disk model.[27] | |
CFHTWIR-Oph 90 | 2.00 +0.09 −0.12;[67] 3[68][69] |
† | 10.5[68] | May be rogue planet or brown dwarf | |
SSTB213 J041757 a | 2[70] | † | 3.5[70] | In a binary with a smaller 1.7 RJ planet. | |
Kepler-435b (KOI-614 b) |
1.99 ± 0.18[71] | ← | 0.84 ± 0.15[71] | ||
PDS 70 c | 1.98 +0.39 −0.31[72] |
← | 7.5 +4.7 −4.2, 7.8 +5.0 −4.7, ~1 − ~15 (total)[73] |
First confirmed directly imaged exoplanet still embedded in the natal gas and dust from which planets form (protoplanetary disk) and the second protoplanet to have a confirmed circumplanetary disk (after DH Tauri b).[74] PDS 70 is the second multi-planet system to be directly imaged (after HR 8799). | |
PDS 70 b | 1.96 +0.20 −0.17[72] |
← | 3.2 +3.3 −1.6, 7.9 +4.9 −4.7, < 10 (2 σ), ≲ 15 (total)[73] |
First protoplanet to have been ever detected. PDS 70 is the second multiplanetary system to be directly imaged (after HR 8799 system). Other source of radius includes 2.7 RJ.[38] | |
OGLE2-TR-L9b | 1.958+0.174 −0.111[65] |
← | 4.5±1.5[65] | First discovered planet orbiting a fast-rotating hot star, OGLE2-TR-L9.[75] | |
CFHTWIR-Oph 98 A | 1.95+0.11 −0.10;[67] 2.14[68][76] |
* | 15.4 ± 0.8;[77] 10.5[68] |
Either a M-type brown dwarf or sub-brown dwarf with a sub-brown dwarf/planet companion CFHTWIR-Oph 98 b. Other sources of masses includes: 9.6 – 18.4 MJ.[77] | |
WASP-178b (KELT-26 b, HD 134004 b) |
1.940 +0.060 −0.058[78] |
← | 1.41 +0.43 −0.51[78] |
An ultra-hot Jupiter. Initially, the planet's atmosphere was discovered having silicon monoxide, making this exoplanet the first one to have the compound on its atmosphere,[79] now the atmosphere is more likely dominated by ionized magnesium and iron.[80] | |
WASP-12b | 1.937 ± 0.056[81] | ← | 1.47 +0.076 −0.069[82] |
This planet is so close to WASP-12 A that its tidal forces are distorting it into an egg-like shape.[83] First planet observed being consumed by its host star;[84] it will be destroyed in 3.16 ± 0.10 Ma due to tidal interactions.[85][86] WASP-12b is suspected to have one exomoon due to a curve of change of shine of the planet observed regular variation of light.[87] | |
BD-14 3065 b (TOI-4987 b) |
1.926 ± 0.094[88] | ← | 12.37 ± 0.92[88] | Might be a brown dwarf fusing deuterium at its core, which could explain its anomalous high radius. Also one of the hottest known exoplanets, measuring 3,520 K (3,250 °C; 5,880 °F).[88] | |
KELT-9b (HD 195689 b) |
1.891 +0.061 −0.055[89] |
← | 2.17 ± 0.56[90] | Hottest confirmed exoplanet, with a temperature of 4050±180 K (3777 ± 180 °C; 6830 ± 324 °F).[91] | |
TOI-1518 b | 1.875 ± 0.053[92] | ← | < 2.3 (2 σ)[92] | ||
HAT-P-70b | 1.87 +0.15 −0.10[93] |
← | < 6.78 (3 σ)[93] | ||
2MASS J1935-2846 | 1.869 ± 0.053[94] | † | 7.4 +6.3 −3.4[94] |
May be a sub-brown dwarf or rogue planet. | |
HATS-23b | 1.86 +0.30 −0.40[95] |
→ | 1.470 ± 0.072[95] | Grazing planet. | |
CFHTWIR-Oph 98 b (CFHTWIR-Oph 98 B) |
1.86 ± 0.05[96][76] | † | 7.8 +0.7 −0.8[77] |
Its formation as an exoplanet is challenging or impossible.[97] If its formation scenario is known, it may explain the formation of Planet Nine. Planetary migration may explain its formation, or it may be a sub-brown dwarf. Other sources of mass includes 4.1 – 11.6 MJ.[77] | |
KELT-8b | 1.86 +0.18 −0.16[98] |
← | 0.867 +0.065 −0.061[98] |
||
KPNO-Tau 12 | 1.84,[13] 2.22 +0.11 −0.17[67] |
† | 11.5[68] | A member of Taurus-Auriga star-forming region.[13] | |
TrES-4 (GSC 06200-00648 Ab) |
1.838 +0.240 −0.238[65] |
← | 0.78 ± 0.19[99] | This planet has a density of 0.17 g/cm3,[65] about that of balsa wood, less than Saturn's 0.7 g/cm3. | |
HAT-P-33b | 1.827 ± 0.29,[100] 1.85±0.49[96] |
← | 0.72 +0.13 −0.12[101] |
||
HAT-P-32b | 1.822 +0.350 −0.236[65] |
← | 0.941 ± 0.166, 0.860 ± 0.164[102] |
||
KELT-20b (MASCARA-2b) |
1.821±0.045[103] | ← | 3.355+0.062 −0.063[103] |
An ultra-hot Jupiter. | |
YSES 1 b (TYC 8998-760-1 b) |
1.82 ± 0.08[104] – 3.0 +0.2 −0.7[105] |
* | 21.8 ± 3[106] | Likely a brown dwarf. First substellar object to have an isotope (13C) in its atmosphere.[107][104] First directly imaged planetary system having multiple bodies orbiting a Sun-like star.[108][109] | |
Barnard's Star | 1.82 ± 0.01[110] (0.187 ± 0.001 R☉) |
# | 168.7 +3.8 −3.7[110] (0.1610 +0.0036 −0.0035 M☉) |
Second nearest planetary system to the Sun at the distance of 5.97 ly (1.83 pc) and closest star in the northern celestial hemisphere. Also the highest proper motion of any stars of 10.3 arcseconds per year relative to the Sun. Has a planet, Barnard's Star b / Barnard b.[111] Reported for reference. | |
CoRoT-1b | 1.805 +0.132 −0.131[65] |
← | 1.03 ± 0.12[65] | First exoplanet for which optical (as opposed to infrared) observations of phases were reported.[112] | |
WTS-2b | 1.804 +0.144 −0.158[65] |
← | 1.12 ± 0.16[65] | ||
WASP-76b | 1.802±0.042[103] | ← | 0.921±0.032[103] | WASP-76b is suspected to have an exomoon analogue to Jupiter's Io due to the detection of sodium via absorption spectroscopy.[113] | |
Saffar (υ And Ab) |
~1.8[114] | ← | 1.70 +0.33 −0.24[115] |
Radius estimated using the phase curve of reflected light. The planet orbits very close to Titawin (υ And A) at the distance of 0.0595 AU, completing an orbit in 4.617 days.[116] First multiple-planet system to be discovered around a main-sequence star, and first multiple-planet system known in a multiple-star system. | |
HAT-P-40b | 1.799 +0.237 −0.260[65] |
← | 0.48 ± 0.13[65] | A very puffy hot Jupiter | |
WASP-122b (KELT-14b) |
1.795 +0.107 −0.079[65] |
← | 1.284 ± 0.032[117] | ||
KELT-12b | 1.79 +0.18 −0.17[118] |
← | 0.95 ± 0.14[118] | ||
Tylos (WASP-121b) |
1.773 +0.041 −0.033[119] |
← | 1.157 ± 0.07[119] | First exoplanet found to contain water on its stratosphere. Tylos is suspected to have an exomoon analogous to Jupiter's Io due to the detection of sodium absorption spectroscopy around it.[120] | |
TOI-640 Ab | 1.771 +0.060 −0.056[121] |
← | 0.88 ± 0.16[121] | ||
WASP-187b | 1.766 ± 0.036[54] | ← | 0.801 +0.084 −0.083[54] |
||
WASP-94 Ab | 1.761 +0.194 −0.191[65] |
← | 0.5±0.13[65] | ||
TOI-2669b | 1.76 ± 0.16[122] | ← | 0.61 ± 0.19[122] | ||
WISE J0528+0901 | 1.752 +0.292 −0.195[123] |
† | 13 +3 −6[123] |
Brown dwarf or rogue planet. | |
HATS-26b | 1.75 ± 0.21[124] | ← | 0.650 ± 0.076[124] | ||
Kepler-12b | 1.7454 +0.076 −0.072[125] |
← | 0.431 ± 0.041[126] | ||
HAT-P-65b | 1.744 +0.165 −0.215[65] |
← | 0.527 ± 0.083[127] | This planet has been suffering orbital decay due to its close proximity to HAT-P-65; 0.04 AU.[128] | |
2MASS J2352-1100 | 1.742 +0.035 −0.036[94] |
† | 12.4 +9.4 −5.5[94] |
Brown dwarf or rogue planet. | |
KELT-15b | 1.74 ± 0.20[99] | ← | 1.31 ± 0.43[99] | ||
HAT-P-57b | 1.74 ± 0.36[99] | ← | 1.41 ± 1.52[99] | ||
WASP-93b | 1.737 +0.121 −0.170[65] |
← | 1.47 ± 0.29[65] | ||
WASP-82b | 1.726+0.163 −0.195[65] |
← | 1.17±0.20[65] | ||
Ditsö̀ (WASP-17b) |
1.720 +0.004 −0.005, 1.83 ± 0.01[129] |
← | 0.512 ± 0.037[130] | First planet discovered to have a retrograde orbit[131] and first to have quartz (crystalline silica, SiO2) in its clouds.[132] Has an exteremely low density of 0.08 g/cm3,[133] the lowest of any exoplanet when it was discovered, and was possibly the largest exoplanet at the time of discovery, with a radius of 1.92 RJ.[134] | |
KELT-19 Ab | 1.717+0.094 −0.093[103] |
← | 3.98+0.32 −0.33[103] |
||
HAT-P-39b | 1.712+0.140 −0.115[65] |
← | 0.60±0.10[65] | ||
KELT-4Ab | 1.706 +0.085 −0.076[135] |
← | 0.878 +0.070 −0.067[135] |
||
Pollera (WASP-79b) |
1.704 +0.195 −0.180[65] |
← | 0.850 +0.180 −0.180[65] |
||
HAT-P-64b | 1.703 ± 0.070[136] | ← | 0.58 +0.18 −0.13[136] |
||
WASP-78b | 1.70 ± 0.04,[137] 1.93 ± 0.45[96] |
← | 0.89 ± 0.08[137] | This planet has likely undergone in the past a migration from the initial highly eccentric orbit.[138] | |
Qatar-7b | 1.70 ± 0.03[96] | ← | 1.88 ± 0.25[139] | ||
SSTB213 J041757 b | 1.70[140] | † | 1.50[140] | In a binary with a larger 2 RJ planet. | |
CoRoT-17b | 1.694 +0.139 −0.193[65] |
← | 2.430±0.300[65] | ||
TOI-615b | 1.69+0.06 −0.05[141] |
← | 0.43+0.09 −0.08[141] |
||
TOI-3807 b | >1.65 (95% lower limit)[142] | → | 1.04 +0.15 −0.14[142] |
Grazing planet, a large radius of 2.00 RJ derived from transit data is unreliable due to its grazing nature. | |
KELT-8b | 1.62 ± 0.10[99] | ← | 0.66 ± 0.12[99] | ||
WASP-82b | 1.62 ± 0.13 | ← | 1.17 ± 0.20[99] | ||
WASP-189 b | 1.619 ± 0.021[143] | ← | 1.99+0.16 −0.14[143] |
One of the hottest known exoplanets. | |
HAT-P-65b | 1.611 ± 0.024[144] | ← | 0.554+0.092 −0.091[144] |
||
HATS-11b | 1.609 ± 0.064[145] | ← | |||
K2-52b | 1.61 ± 0.20[146] | ← | |||
KELT-7b | 1.60 ± 0.06[99] | ← | 1.39 ± 0.22[99] | ||
SR 12 c (SR 12 (AB) b, SR 12 C) |
~ 1.6,[147] 2.38 +0.27 −0.32[67] |
? | 11 ± 3[147] | The planet is at the very edge of the deuterium burning limit. This object orbits around SR 12 AB at the distance of 980 AU but has a circumplanetary disk, detected in sub-mm with ALMA.[147] Other sources of masses includes 14 +7 −8 MJ,[148] 12 – 15 MJ[149] and 13 ± 2 MJ.[67] | |
A few notable examples with radii below 1.6 RJ (17.93 R🜨). | |||||
Kepler-7b | 1.574 +0.075 −0.071[125] |
← | 0.433 +0.040 −0.041[150] |
One of the first five exoplanets to be confirmed by the Kepler spacecraft, within 34 days of Kepler's science operations,[151] and the first exoplanet to have a crude map of cloud coverage.[152][153][154] | |
HD 106906 b | 1.54 +0.04 −0.05[155] |
← | 11 ± 2[156] | This planet orbits around HD 106906 at the distance of 738 AU, a distance much larger than what is possible for a planet formed within a protoplanetary disk.[157] It more likely formed on its own, like a star, rather in a protoplanetary disk.[158] Recent observations made by the Hubble Space Telescope strengthened the case for the planet having an unusual orbit that perturbed it from its host star's debris disk causing NASA and several news outlets to compare to the hypothetical Planet Nine.[159][160] | |
Proxima Centauri (Alpha Centauri C) |
1.50 ± 0.04[161] (0.1542 ± 0.0045 R☉) |
# | 127.9 ± 2.3[161] (0.1221 ± 0.0022 M☉) |
The nearest star and planetary system to the Sun, at a distance of 4.24 ly (1.30 pc), orbiting around Alpha Centauri AB System, the nearest star system to the Sun. Age: 4.85 Gyr.[162] Has a confirmed planet, Proxima Centauri b,[163] a disputed planet, Proxima Centauri c,[164] and a unconfirmed planet, Proxima Centauri d. Reported for reference. | |
Beta Pictoris b (β Pic b) |
1.46 ± 0.01[165] | ← | 11.729 +2.337 −2.135[166] |
First exoplanet to have its rotation rate measured and fastest-spinning exoplanet known at the time of discovery.[167][168] Beta Pictoris b is suspected to have exomoon due to the former's predicted obliquity misalignment.[169] | |
Najsakopajk (HIP 65426 b) |
1.44 ± 0.03[170] | ← | 7.1 ± 1.2, 9.9 +1.1 −1.8, 10.9 +1.4 −2.0[170] |
First exoplanet to be imaged by the James Webb Space Telescope.[171] The JWST direct imaging observations tightly constrained its bolometric luminosity, which provides a robust mass constraint of 7.1 ± 1.2 MJ. The atmospheric fitting of both temperature and radius are in disagreement with evolutionary models. Moreover, this planet is around 14 million years old which is however not associated with a debris disk, despite its young age,[172][173] causing it to not fit current models for planetary formation.[174] | |
HD 209458 b ("Osiris") |
1.359 +0.016 −0.019[175] |
← | 0.682 +0.014 −0.015[175] |
Represents multiple milestons in exoplanetary discovery, such as the first exoplanet known observed to transit its host star, the first exoplanet with a precisely measured radius, one of first two exoplanets (other being HD 189733 Ab) to be observed spectroscopically[176][177] and the first to have an atmosphere, containing evaporating hydrogen, and oxygen and carbon. First extrasolar gas giant to have its superstorm measured. Nicknamed "Osiris". | |
Teide 1 | 1.311 +0.120 −0.075[94] (0.1347 +0.0123 −0.0077 R☉) |
# | 52 +15 −10[94] (0.0496 +0.0143 −0.0095 M☉) |
The first brown dwarf to be confirmed.[178][179] It is located in the Pleiades and has an age of 70 – 140Myr.[180] Reported for reference. | |
OGLE-TR-56b | 1.30 ± 0.05 | ← | 1.29 ± 0.12 | First discovered exoplanet using the transit method.[181] | |
TrES-2 (Kepler-1 Ab) |
1.265 +0.054 −0.051[125] |
← | 1.199 ± 0.052[182] | Darkest known exoplanet due to an extremely low geometric albedo of 0.0136, absorbing 99% of light. | |
Dimidium (51 Pegasi b) |
1.2 ± 0.1[183] | ← | 0.46 +0.06 −0.01[184] |
First exoplanet to be discovered orbiting a main-sequence star.[185] Prototype of the hot Jupiters. | |
HR 8799 e | 1.17+0.13 −0.11[186] |
← | 9.6 +1.9 −1.8[187] |
First exoplanet to be directly observed using optical interferometry. HR 8799 system is also the first directly imaged planetary system having multiple exoplanets. | |
TRAPPIST-1 | 1.16 ± 0.01[188] (0.1192 ± 0.0013 R☉) |
# | 94.1 ± 2.4[188] (0.0898 ± 0.0023 M☉) |
Coldest and smallest known star hosting exoplanets.[189] All seven exoplanets are rocky planets, orbiting closer to the star than Mercury. Their orbits' inclinations of 0.1 degrees[190] makes TRAPPIST-1 system the flattest planetary system.[191] Age: 7.6 ± 2.2 Gyr.[192] Reported for reference. | |
HD 189733 Ab | 1.138 ± 0.027[175] | ← | 1.123 ± 0.045[175] | First exoplanet to have its thermal map constructed,[193] its overall color (deep blue) determined,[194][195] its transit viewed in the X-ray spectrum, one of first two exoplanets (other being "Osiris") to be observed spectroscopically[176][177] and first to have carbon dioxide confirmed as being present in its atmosphere. Such the rich cobalt blue[196][197] colour of HD 189733 Ab may be the result of Rayleigh scattering. The wind can blow up to 8,700 km/h (5,400 mph) from the day side to the night side.[198] | |
2M1207 b (TWA 27b) |
1.13[199] | † | 5.5 ± 0.5[199] | First planetary body discovered via direct imaging, and the first around a brown dwarf.[200][201] It could be considered a sub-brown dwarf due to its large mass in relation to its host: 2M1207 b is around six times more massive than Jupiter, but orbits a 26 MJ brown dwarf, a ratio much larger than the 1:1000 of Jupiter and Sun for example. The IAU defined that exoplanets must have a mass ratio to the central object less than 0.04,[202][203] which would make 2M1207b a sub-brown dwarf. Nevertheless, 2M1207b has been considered an exoplanet by press media and websites,[204][205][206] exoplanet databases[207][208] and alternative definitions.[209] It will shrink to a size slightly smaller than Jupiter as it cools over the next few billion years. | |
2MASS J0523−1403 | 1.126 ± 0.063[210] (0.116 ± 0.006 R☉) |
# | 103 ± 11[210] (0.0983 ± 0.0011 M☉) or 67.54 ± 12.79[211] (0.0644 ± 0.0122 M☉) |
Coolest main sequence star with effective temperature 1939 K (1666 °C; 3031 °F)[211] and one of the least smallest stars, in both radius and mass.[212] Reported for reference. | |
Gliese 900 b (CW2335+0142) |
1.11[213] | ← | 10.5[214] | This exoplanet has the largest observed host star separation of any known exoplanet, at 12 000 AU (0.058 pc; 0.19 ly) and the longest known orbital period, at a duration of 1.27 Myr. First confirmed and third discovered circumtriple planet. | |
CoRoT-3 Ab | 1.08 ± 0.05[215] | * | 21.66 ± 1.00[216] | Might be considered either a planet or a brown dwarf, depending on the definition chosen for these terms. If the brown dwarf/planet limit is defined by mass regime using the deuterium burning limit as the delimiter (i.e. 13 MJ), CoRoT-3b is a brown dwarf.[217] If formation is the criterion, CoRoT-3 Ab may be a planet given that some models of planet formation predict that planets with masses up to 25–30 Jupiter masses can form via core accretion.[218] However, it is unclear which method of formation created CoRoT-3A b. | |
Kepler-90h | 1.01 ± 0.09[219] | ← | 0.639 ± 0.016[220] | Located in the Kepler-90 system with eight known exoplanets, whose architecture is similar to that of the Solar System, with rocky planets being closer to the star and gas giants being more distant. This planet is located at 1 AU from its star, which is within the habitable zone of Kepler-90 and thus could theoretically have a habitable Earth-like exomoon. | |
Ahra (WD 0806-661 b) |
1.007 – 1.04[221] | ← | 6.8 – 9.0[221] | First exoplanet discovered around a single (as opposed to binary) white dwarf, and the coldest directly imaged exoplanet when discovered.[222] Possibly formed closer to Maru (WD 0806−661) when it was a main sequence star, this object migrated further away as it reached the end of its life (see stellar evolution), with a current separation of about 2500 AU. Might be considered an exoplanet or a sub-brown dwarf, the dimmest sub-brown dwarf. The IAU considers objects below the ~13 MJ limiting mass for deuterium fusion that orbit stars (or stellar remnants) to be planets, regardless on how they formed.[223] | |
Jupiter | 1 (11.209 R🜨)[5] (71 492 km) |
# | 1 (317.827 M🜨)[224] (1.898 125 × 1027 kg) |
Oldest, largest and most massive planet in the Solar System;[225] this planet hosts 95 known moons including the Galilean moons. Reported for reference. | |
For smaller exoplanets, see the list of smallest exoplanets or other lists of exoplanets. |
Notes
[edit]- ^ Applying the Stefan–Boltzmann law with a nominal solar effective temperature of 5,772 K:
- .
- ^ Using PMS evolutionary models and a potential higher age of 1 Myr, the luminosity would be lower, and the planet would be smaller. However, this would require for the object to be closer as well, which is unlikely. Another distance estimate to the Orion Nebula Cluster would result in a luminosity 1.14 times lower and also a smaller radius.
- ^ Instead of a photo-evaporating disk it may be an evaporating gaseous globule (EGG). If so, it has a final mass of 2 - 28 MJ.[8]
- ^ A calculated radius thus does not need to be the radius of the (dense) core.
- ^ Proplyd 133-353 is proposed to have formed in a very low-mass dusty cloud or an evaporating gas globule as a second generation of star formation, which can explain both its young age and the presence of its disk.
- ^ [b] [c] [d] [e] [8]
- ^ a b c d e Based on the estimated temperature and luminosity via the Stefan-Boltzmann law.
- ^ This radius estimate might have been affected the planet's circumplanetary disk, as the spectrum does not necessarily corresponds to a planet photosphere.
- ^ Calculated using Rp/R⋆ multiplied by R⋆. The value is later multiplied by (142984 km ÷ 1391400 km) to convert from R☉ to RJ.
Candidates for largest exoplanets
[edit]Unconfirmed exoplanets
[edit]These planets are also larger than 1.6 times the size of the largest planet in the Solar System, Jupiter, but have yet to be confirmed or are disputed.
Note: Some data may be unreliable or incorrect due to unit or conversion errors
← | Probably planets (≲ 13 MJ) (based on mass) |
---|---|
‡ | Unclassified object (unknown mass) |
– | Theoretical planet size restrictions |
Artist's impression | |
---|---|
Composite image of direct observations |
Illustration | Name (Alternates) (Status) |
Radius (RJ) |
Key | Mass (MJ) |
Notes |
---|---|---|---|---|---|
New born planet limit | ~ 30[226] | – | ≤ 20 (≤ 13)[226] |
Theoretical size limit of a newly-formed planet. | |
Young Hot Jupiter limit | ~ 20[227] | – | ≤ 10[227] | Theoretical size limit of a newly-formed planet that needed 104 – 105 (10000 – 100000) years to migrate close to the host star, but has not yet interacted with it beforehand. | |
FU Orionis North b (FU Ori Ab) (unconfirmed) |
~ 9.8[226] (~ 1.0 R☉) |
← | ~ 3[226] | Discovered using a variation of disk kinematics.[228] Tidal disruption and extreme evaporation made the planet radius shrink from the beginning of the burst (14 RJ) in 1937[227] to the present year by ~30 per cent and its mass is around half of its initial mass of 6 MJ.[227][226] | |
UCAC4 174-179953 b (unclassified) |
8.14 ± 0.40[229] (0.84 R☉) |
‡ | Unknown | Object cannot be classified as brown dwarf or exoplanet without a mass estimate. | |
UCAC4 220-040923 b (unclassified) |
4.65 ± 0.20[229] | ‡ | Unknown | ||
UCAC4 223-042828 b (unclassified) |
3.33 ± 0.50[229] | ‡ | Unknown | ||
UCAC4 185-192986 b (unclassified) |
3.3 ± 0.2[229] | ‡ | Unknown | ||
UCAC4 118-126574 b (unclassified) |
3.12 ± 0.10[229] | ‡ | Unknown | ||
UCAC4 171-187216 b (unclassified) |
2.75 ± 0.20[229] | ‡ | Unknown | ||
KOI-7073 b (unclassified) |
2.699 +0.473 −0.794[230] |
‡ | Unknown | ||
UCAC4 175-188215 b (unclassified) |
2.69 ± 0.50[229] | ‡ | Unknown | ||
UCAC4 116-118563 b (unclassified) |
2.62 ± 0.10[229] | ‡ | Unknown | ||
19g-2-01326 b (unclassified) |
2.29 +0.13 −0.61[231] |
‡ | Unknown | ||
SOI-2 b (unclassified) |
2.22[232] | ‡ | Unknown | ||
TIC 332350266.01 (unclassified) |
2.21±3.18[233] | ‡ | Unknown | ||
Old Hot Jupiter limit | 2.2[53] | – | > 0 | Theoretical limit for hot Jupiters close to a star, that are limited by tidal heating, resulting in 'runaway inflation' | |
TIC 138664795.01 (unclassified) |
2.16 ± 0.16[233] | ‡ | Unknown | Object cannot be classified as brown dwarf or exoplanet without a mass estimate. | |
UCAC4 221-041868 b (unclassified) |
2.1 ± 0.20[229] | ‡ | Unknown | ||
TOI-496 b (unclassified) |
2.05 +0.63 −0.29[234] |
‡ | Unknown | ||
SOI-7 b (unclassified) |
1.96[232] | ‡ | Unknown | ||
UCAC4 121-140615 b (unclassified) |
1.94 ± 0.20[229] | ‡ | Unknown | ||
UCAC4 123-150641 b (unclassified) |
1.93 ± 0.20[229] | ‡ | Unknown | ||
TIC 274508785.01 (unclassified) |
1.92±2.37[233] | ‡ | Unknown | ||
W74 b (Gaia DR2 6045477635223138432 b) (unclassified) |
1.9[235] | ‡ | Unknown | ||
TIC 116307482.01 (unclassified) |
1.89 ± 1.46[233] | ‡ | Unknown | ||
UCAC4 122-142653 b (unclassified) |
1.85 ± 0.10[229] | ‡ | Unknown | ||
TIC 77173027.01 (unclassified) |
1.84 ± 1.12[233] | ‡ | Unknown | ||
TOI-159 Ab (unclassified) |
1.80 ± 0.77[236] | ‡ | Unknown | ||
TIC 82205179.01 (TIC 82205179 b) (unclassified) |
1.76 ± 0.56[233] | ‡ | Unknown | ||
UCAC4 124-144273 b (unclassified) |
1.71 ± 0.10[229] | ‡ | Unknown |
Exoplanets with uncertain radii
[edit]This list contains planets with uncertain radii that could be below or above the adopted cut-off of 1.6 RJ, depending on the estimate.
← | Probably planets (≲ 13 MJ) (based on mass) |
---|---|
? | Status uncertain (inconsistency in age or mass of planetary system) |
→ | Planets with grazing transit, hindering radius determination |
Direct imaging telescopic observation |
---|
Illustration | Name (Alternates) |
Radius (RJ) |
Key | Mass (MJ) |
Notes |
---|---|---|---|---|---|
AB Pictoris b (AB Pic b) |
1.57 ± 0.07 – 1.8 ± 0.3[237] | ← | 10 ± 1[237] | Previously believed to be a likely brown dwarf, with mass estimates of 13–14 MJ[238] to 70 MJ,[239] its mass is now estimated to be 10±1 MJ, with an age of 13.0+1.1 −0.6 million years.[240] | |
TOI-2193 Ab | >1.55 (95% lower limit)[241] | → | 0.94 ± 0.18[241] | Grazing planet, a large reported radius of 1.77 RJ is unreliable. Whether it is larger than 1.6 RJ is unknown. | |
TOI-3540 b | >1.44 (95% lower limit)[241] | → | 1.18 ± 0.14[241] | Grazing planet, a large reported radius of 2.10 RJ is unreliable. Whether it is larger than 1.6 RJ is unknown. | |
TOI-1408 b | >1, 1.5 (estimate),[242] 2.23 ± 0.36,[a] 2.4 ± 0.5[243] |
→ | 1.86 ± 0.02[243] | A large radius of 2.23–2.4 RJ has been derived from transit photometry,[243] but this value is likely inaccurate due to the grazing transit of TOI-1408 b; it transits only part of the star's surface, thus hindering a precise measurement of planet-to-star size ratio. Only a lower limit of about 1 RJ can be obtained, whether TOI-1408 b is larger than 1.6 RJ is unknown.[242] |
Chronological list of largest exoplanets
[edit]These exoplanets were the largest at the time of their discovery.
* | Later identified to be a probable brown dwarf or a star (≳ 13 MJ) |
---|---|
† | Candidate for largest exoplanet (currently or in time span) |
? | Status uncertain (inconsistency in age or mass of planetary system) while being candidate for largest exoplanet |
→ | Assumed largest exoplanet, while unconfirmed, later retracted or later confirmed |
← | Largest exoplanet (≲ 13 MJ) at the time |
– | Largest confirmed exoplanet (in radius and mass), while discovered candidates might be larger |
# | Non-exoplanets reported for reference |
Artist's impression | |
---|---|
Artist's impression size comparison | |
Direct Imaging telescopic observation | |
Transiting telescopic observation | |
Graphic chart |
Years largest discovered | Illustration | Name (Alternates) |
Radius (RJ) |
Key | Mass (MJ) |
Notes |
---|---|---|---|---|---|---|
2024 – present | XO-6b | 2.17 ± 0.2[54] | – | 4.47 ± 0.12[54] | A very puffy Hot Jupiter | |
2024 – 2024 | HAT-P-67b | 2.165 +0.024 −0.022[b][62] |
– | 0.418 ± 0.012[54] | A very puffy Hot Jupiter. Previously the largest known planet with an accurately and precisely measured radius,[63] a new estimate revised its radius.[62][54] | |
(2022 – 2025) | AB Aurigae b (AB Aur b, HD 31293 b) |
2.75[36] | ? | 20 (~ 4 Myr)[37] < 130, 10 – 12 (1 Myr)[36] |
The commonly favored model for gas giant planet formation – core accretion – has significant difficulty forming massive gas giant planets at AB Aur b's very large distance from its AB Aur. Instead, AB Aur b may be forming by disk (gravitational) instability,[244] where as a massive disk around a star cools, gravity causes the disk to rapidly break up into one or more planet-mass fragments.[245] | |
(2020 – present) | PDS 70b | 2.09 +0.23 −0.31 – 2.72 +0.15 −0.17,[246] 2.7[38] |
† | 3.2 +3.3 −1.6, 7.9 +4.9 −4.7, < 10 (2 σ), ≲ 15 (total)[73] |
Has been later measured to have a radius of only 1.96 RJ,[72] but 2.7 RJ in 2022.[38] Large size needs confirmation due to this discrepancy. | |
(2020 – present) | SR 12 c (SR 12 (AB) c, SR 12 C) |
2.38 +0.27 −0.32[67] |
? | 13 ± 2[67] | The planet is at the very edge of the deuterium burning limit. Mass being below it needs confirmation. Other sources of masses includes 14 +7 −8 MJ,[148] 12 – 15 MJ.[149] | |
2017 – 2024 | HAT-P-67b | 2.085 +0.096 −0.071[64] |
– | 0.34 +0.25 −0.19[247] |
A very puffy Hot Jupiter. At discovery the largest known planet with an accurately and precisely measured radius.[63] | |
2017 – 2017 | XO-6b | 2.07 ± 0.22[248] | – | 4.47 ± 0.12[54] | A very puffy Hot Jupiter | |
(2014 – 2024) | ROXs 42B b | 2.43 ± 0.18 – 2.55 ± 0.2[60] 2.10 ± 0.35[19] |
† | 9 +6 −3;[57] 10 ± 4[58] |
Large size needs confirmation. Other estimates include 1.9 – 2.4 RJ, 1.3 – 4.7 RJ.[59] Other recent sources of masses include 3.2 – 27 MJ,[61] 13 ± 5 MJ.[19] | |
2010 – 2017 | Ditsö̀ (WASP-17b) |
1.74 +0.26 −0.23[131] |
– | 0.512 ± 0.037[130] | First planet discovered to have a retrograde orbit[131] and first to have quartz (crystalline silica, SiO2) in the clouds of an exoplanet.[132] Puffiest and possibly largest exoplanet at the time of discovery.[134] Extremely low density of 0.08 g/cm3.[133] | |
2007 – 2010 | TrES-4 (GSC 02620-00648 Ab) |
1.674 ± 0.094[249] | – | 0.78 ± 0.19[99][65] | This planet has a density of 0.2 g/cm3, less than Saturn's 0.7 g/cm3. | |
(2006 – present) | DH Tauri b (DH Tau b) |
1.75[250][251][c] 2.7 ± 0.8[21] |
† | 11.5 +10.5 −3.1[250] |
Mass being below the deuterium burning limit needs confirmation. Temperature originally given as 2700 – 2800 K.[251] Other sources give the radii: 2.49 RJ,[27][c] 2.68 RJ,[252] and 2.6 ± 0.6 RJ[19] and masses: 11 ± 3 MJ,[21] 14.2 +2.4 −3.5 MJ,[44] 17 ± 6 MJ[45] and 12 ± 4 MJ[19] | |
2006 – 2007 | HD 209458 b ("Osiris") |
1.27 ± 0.02[253] | – | 0.682 +0.014 −0.015[175] |
First known transiting exoplanet, first precisely measured planet available, first to have its orbital speed measured, determining its mass directly,[254] one of first two exoplanets (other being HD 189733 Ab) to be observed spectroscopically[176][177] and first to have an atmosphere, containing evaporating hydrogen, and first to have contained oxygen and carbon. First extrasolar gas giant to have its superstorm measured. Nicknamed "Osiris". | |
(2005 – present) | GQ Lupi b (GQ Lup Ab, GQ Lup B) |
~ 2[255] 3.50 +1.50 −1.03[20] |
* | 1 – 46[256] | Second exoplanet candidate to be directly imaged (after 2M1207 b). | |
1999 – 2006 | HD 209458 b ("Osiris") |
1.27 ± 0.02[253] | ← | 0.682 +0.014 −0.015[175] |
First known transiting exoplanet, first precisely measured radius available, first to have its orbital speed measured, determining its mass directly,[254] and first to have an atmosphere, containing evaporating hydrogen, and first to have contained oxygen and carbon. First extrasolar gas giant to have its superstorm measured. Nicknamed "Osiris". | |
(1995 – 1999) | various | Unknown | † | 0.49 – 8.37 | About 20 – 25 planets were found within this time span via the radial velocity method, none of them having radius measurements, especially shortly after their discoveries. As expected, Dimidium is larger than Poltergeist, whether one of the additional planets found till 1999 is larger than Dimidium is not clear to this day. | |
1995 – 1999 | Dimidium (51 Peg b) |
Unknown | – | 0.46 +0.06 −0.01[184] |
First convincing exoplanet discovered orbiting a main-sequence star. Prototype hot Jupiter. | |
1995 – 1995 | Dimidium (51 Peg b) |
Unknown | ← | 0.46 +0.06 −0.01[184] |
First convincing exoplanet discovered orbiting a main-sequence star. Prototype hot Jupiter. | |
(1993 – 1995) | PSR B1620−26 b (PSR B1620-26 (AB) b, "Methuselah") |
Unknown | → | 2.5 ± 1[257] | Likely larger than Poltergeist, but not confirmed as planet until 2003. First circumbinary planet, first planet to be found in a globular cluster and the oldest planet to be discovered (until 2020) at the age of 11.2–12.7 billion years old,[258] hence the nickname, "Methuselah".[257][259] | |
1992 – 1995 | Poltergeist (PSR B1257+12 c) |
Unknown | ← | 0.013 53 ± 0.000 63 (4.3 ± 0.2 M🜨)[260] |
First confirmed planet ever discovered outside the Solar System together with the less massive Draugr (PSR B1257+12 b), one of three pulsar planets known to be orbiting the pulsar Lich (PSR B1257+12).[261][262] Unclear whether Lich planets are survivors or formed in a second round of planet formation from the remnants of the supernova. | |
(1989 – 1992) | HD 114762 b ("Latham's Planet", HD 114762 Ab) |
Unknown | * | 11.069 ± 0.063,[263] ~63.2[264] |
Discovered in 1989 by Latham to have a minimum mass of 11.069 ± 0.063 MJ (at 90°) and a probable mass of approximately 63.2 MJ (at 10°),[264] making the former planet the first to be spotted,[265] and confirmed in 1991, it was thought to be the first discovered exoplanet until 2019 when it was confirmed to be a low-mass star with the mass of 147.0 +39.3 −42.0 MJ,[266] making the planet above the first confirmed planet discovered ever. | |
(1988 – 1992) | Tadmor (Gamma Cephei Ab, γ Cep Ab) |
Unknown | → | 6.6 +2.3 −2.8[267] |
First evidence for exoplanet to receive later confirmation. First reported in 1988,[268] making it arguably the first true exoplanet discovered, and independently in 1989,[269] however, retracted in 1992[270] due to the possibility that the stellar activity of the star mimics a planet not allowing a solid discovery claim and then finally confirmed in 2003.[271] | |
(Antiquity – 1992, 1988 or 1995) | Jupiter | 1 (11.209 R🜨)[5] (71 492 km) |
# | 1 (317.827 M🜨)[224] (1.898 125 × 1027 kg) |
Oldest, largest and most massive planet in the Solar System[225] Observations date back to 7th or 8th century BC. Using an early telescope the Galilean moons were discovered in 1610, the planet hosts 95 known moons. Reported for reference. | |
For earlier entries, see early speculations and discredited claims. |
Notes
[edit]See also
[edit]- Lists of planets
- List of smallest exoplanets
- List of largest cosmic structures
- List of largest galaxies
- List of largest nebulae
- List of largest known stars
- Lists of astronomical objects
- List of most massive stars
References
[edit]- ^ "Observing Exoplanets: What Can We Really See?". NASA Science. 28 October 2019. Retrieved 2024-08-16.
- ^ "Stanford scientists describe a gravity telescope that could image exoplanets". Stanford University - Stanford Report. Retrieved 2024-08-16.
- ^ "Just a few pixels would let astronomers map surface features like oceans and deserts on an exoplanet". Phys.org - (Universe Today). Retrieved 2024-08-16.
- ^ Jerry Coffey (8 July 2008). "What is the Biggest Planet in the Solar System?". Universe Today. Archived from the original on 16 November 2014. Retrieved 7 November 2014.
- ^ a b c d Prša, Andrej; Harmanec, Petr; Torres, Guillermo; Mamajek, Eric; Asplund, Martin; Capitaine, Nicole; Christensen-Dalsgaard, Jørgen; Depagne, Éric; Haberreiter, Margit; Hekker, Saskia; Hilton, James; Kopp, Greg; Kostov, Veselin; Kurtz, Donald W.; Laskar, Jacques (2016-08-01). "NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3 * †". The Astronomical Journal. 152 (2): 41. arXiv:1605.09788. Bibcode:2016AJ....152...41P. doi:10.3847/0004-6256/152/2/41. ISSN 0004-6256.
- ^ Bonanno, A.; Schlattl, H.; Paternò, L. (2002). "The age of the Sun and the relativistic corrections in the EOS". Astronomy and Astrophysics. 390 (3): 1115–1118. arXiv:astro-ph/0204331. Bibcode:2002A&A...390.1115B. doi:10.1051/0004-6361:20020749. S2CID 119436299.
- ^ a b Chabrier, G.; Johansen, A.; Janson, M.; Rafikov, R. (2014). "Giant Planet and Brown Dwarf Formation". Protostars and Planets VI. arXiv:1401.7559. doi:10.2458/azu_uapress_9780816531240-ch027. ISBN 978-0-8165-3124-0. S2CID 67776527.
- ^ a b c d e Fang, Min; Kim, Jinyoung Serena; Pascucci, Ilaria; Apai, Dániel; Manara, Carlo Felice (2016-12-12). "A candidate planetary-mass object with a photoevaporating disk in Orion". The Astrophysical Journal. 833 (2): L16. arXiv:1611.09761. Bibcode:2016ApJ...833L..16F. doi:10.3847/2041-8213/833/2/L16. ISSN 2041-8213.
- ^ a b c d Gómez Maqueo Chew, Yilen; Stassun, Keivan G.; Prša, Andrej; Mathieu, Robert D. (2009-07-10). "Near-Infrared Light Curves of the Brown Dwarf Eclipsing Binary 2Mass J05352184-0546085: Can Spots Explain the Temperature Reversal?". The Astrophysical Journal. 699 (2): 1196–1208. arXiv:0905.0491. Bibcode:2009ApJ...699.1196G. doi:10.1088/0004-637X/699/2/1196. ISSN 0004-637X.
- ^ Stassun, Keivan G.; Mathieu, Robert D.; Valenti, Jeff A. (March 2006). "Discovery of two young brown dwarfs in an eclipsing binary system". Nature. 440 (7082): 311–314. Bibcode:2006Natur.440..311S. doi:10.1038/nature04570. PMID 16541067.
- ^ "Astronomers Measure Precise Mass of a Binary Brown Dwarf". hubblesite.org. STScI. 15 March 2006. Retrieved 8 May 2024.
- ^ Gómez Maqueo Chew, Yilen; Stassun, Keivan G.; Prša, Andrej; Mathieu, Robert D. (2009-07-10). "Near-Infrared Light Curves of the Brown Dwarf Eclipsing Binary 2Mass J05352184-0546085: Can Spots Explain the Temperature Reversal?". The Astrophysical Journal. 699 (2): 1196–1208. arXiv:0905.0491. Bibcode:2009ApJ...699.1196G. doi:10.1088/0004-637X/699/2/1196. ISSN 0004-637X.
- ^ a b c d Kraus, Adam L.; White, Russel J.; Hillenbrand, Lynne A. (2006-09-20). "Multiplicity and Optical Excess across the Substellar Boundary in Taurus". The Astrophysical Journal. 649 (1): 306–318. arXiv:astro-ph/0602449. Bibcode:2006ApJ...649..306K. doi:10.1086/503665. ISSN 0004-637X.
- ^ a b "Planet KPNO-Tau 4". Encyclopaedia of exoplanetary systems / Exoplanet.eu. Retrieved 2024-08-15.
- ^ Stolker, Tomas; Haffert, Sebastiaan Y.; Kesseli, Aurora Y.; van Holstein, Rob G.; Aoyama, Yuhiko; Brinchmann, Jarle; Cugno, Gabriele; Girard, Julien H.; Marleau, Gabriel-Dominique; Meyer, Michael R.; Milli, Julien; Quanz, Sascha P.; Snellen, Ignas A. G.; Todorov, Kamen O. (2021-12-01). "Characterizing the Protolunar Disk of the Accreting Companion GQ Lupi B*". The Astronomical Journal. 162 (6): 286. arXiv:2110.04307. Bibcode:2021AJ....162..286S. doi:10.3847/1538-3881/ac2c7f. ISSN 0004-6256. S2CID 238582841.
- ^ Sun, Xilei; Huang, Pinghui; Dong, Ruobing; Liu, Shang-Fei (2024). "Observational characteristics of circum-planetary-mass-object disks in the era of James Webb Space Telescope". Astrophysical Journal. 972 (1): 25. arXiv:2406.09501. Bibcode:2024ApJ...972...25S. doi:10.3847/1538-4357/ad57c2.
- ^ a b Neuhäuser, R.; Mugrauer, M.; Seifahrt, A.; Schmidt, T. O. B.; Vogt, N. (2008-06-01). "Astrometric and photometric monitoring of GQ Lupi and its sub-stellar companion". Astronomy and Astrophysics. 484 (1): 281–291. arXiv:0801.2287. Bibcode:2008A&A...484..281N. doi:10.1051/0004-6361:20078493. ISSN 0004-6361.
- ^ Alcalá, J. M.; et al. (2020). "2MASS J15491331-3539118: a new low-mass wide companion of the GQ Lup system". Astronomy & Astrophysics. 635: L1. arXiv:2001.10879. Bibcode:2020A&A...635L...1A. doi:10.1051/0004-6361/201937309. S2CID 210942917.
- ^ a b c d e f g h i j Xuan, Jerry W.; Hsu, Chih-Chun; Finnerty, Luke; Wang, Jason; Ruffio, Jean-Baptiste; Zhang, Yapeng; Knutson, Heather A.; Mawet, Dimitri; Mamajek, Eric E.; Inglis, Julie; Wallack, Nicole L.; Bryan, Marta L.; Blake, Geoffrey A.; Mollière, Paul; Hejazi, Neda (2024-07-01). "Are These Planets or Brown Dwarfs? Broadly Solar Compositions from High-resolution Atmospheric Retrievals of ∼10–30 M Jup Companions". The Astrophysical Journal. 970 (1): 71. arXiv:2405.13128. Bibcode:2024ApJ...970...71X. doi:10.3847/1538-4357/ad4796. ISSN 0004-637X.
- ^ a b Seifahrt, A.; Neuhäuser, R.; Hauschildt, P. H. (2007-02-01). "Near-infrared integral-field spectroscopy of the companion to GQ Lupi". Astronomy & Astrophysics. 463 (1): 309–313. arXiv:astro-ph/0612250. Bibcode:2007A&A...463..309S. doi:10.1051/0004-6361:20066463. ISSN 0004-6361. S2CID 119456238.
- ^ a b c d e Zhou, Yifan; Herczeg, Gregory J; Kraus, Adam L; Metchev, Stanimir; Cruz, Kelle L (2014). "Accretion onto Planetary Mass Companions of Low-mass Young Stars". The Astrophysical Journal Letters. 783 (1): L17. arXiv:1401.6545. Bibcode:2014ApJ...783L..17Z. doi:10.1088/2041-8205/783/1/L17. S2CID 119255447.
- ^ a b Sissa, Elena (2017). "Observation of extrasolar planets at various ages". PhD Thesis, University of Padua, 2017. Bibcode:2017PhDT.......406S.
- ^ Quanz, Sasch P.; Amara, Adam; Meyer, Michael P.; Kenworthy, Matthew P.; et al. (2014). "Confirmation and characterization of the protoplanet HD100546 b - Direct evidence for gas giant planet formation at 50 au". Astrophysical Journal. 807 (1). 64. arXiv:1412.5173. Bibcode:2015ApJ...807...64Q. doi:10.1088/0004-637X/807/1/64. S2CID 119119314.
- ^ Pineda, Jaime E.; Szulágyi, Judit; Quanz, Sascha P.; Van Dishoeck, Ewine F.; Garufi, Antonio; Meru, Farzana; Mulders, Gijs D.; Testi, Leonardo; Meyer, Michael R.; Reggiani, Maddalena (2019). "High-resolution ALMA Observations of HD 100546: Asymmetric Circumstellar Ring and Circumplanetary Disk Upper Limits". The Astrophysical Journal. 871 (1): 48. arXiv:1811.10365. Bibcode:2019ApJ...871...48P. doi:10.3847/1538-4357/aaf389.
- ^ Grady, C. A.; et al. (2001). "The Disk and Environment of the Herbig Be Star HD 100546". The Astronomical Journal. 122 (6): 3396–3406. Bibcode:2001AJ....122.3396G. doi:10.1086/324447.
- ^ a b c d Best, William M. J.; Liu, Michael C.; Magnier, Eugene A.; Bowler, Brendan P.; Aller, Kimberly M.; Zhang, Zhoujian; Kotson, Michael C.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Metcalfe, N.; Wainscoat, R. J. (2017-03-01). "A Search for L/T Transition Dwarfs with Pan-STARRS1 and WISE. III. Young L Dwarf Discoveries and Proper Motion Catalogs in Taurus and Scorpius–Centaurus". The Astrophysical Journal. 837 (1): 95. arXiv:1702.00789. Bibcode:2017ApJ...837...95B. doi:10.3847/1538-4357/aa5df0. ISSN 0004-637X.
- ^ a b c d e f g Bonnefoy, M.; Chauvin, G.; Lagrange, A.-M.; Rojo, P.; Allard, F.; Pinte, C.; Dumas, C.; Homeier, D. (February 2014). "A library of near-infrared integral field spectra of young M–L dwarfs". Astronomy & Astrophysics. 562: A127. arXiv:1306.3709. Bibcode:2014A&A...562A.127B. doi:10.1051/0004-6361/201118270. ISSN 0004-6361.
- ^ Joergens, V.; Bonnefoy, M.; Liu, Y.; Bayo, A.; Wolf, S.; Chauvin, G.; Rojo, P. (October 2013). "OTS 44: Disk and accretion at the planetary border". Astronomy & Astrophysics. 558: L7. arXiv:1310.1936. Bibcode:2013A&A...558L...7J. doi:10.1051/0004-6361/201322432. ISSN 0004-6361.
- ^ Luhman, K. L.; et al. (February 2005), "Spitzer Identification of the Least Massive Known Brown Dwarf with a Circumstellar Disk", The Astrophysical Journal, 620 (1): L51 – L54, arXiv:astro-ph/0502100, Bibcode:2005ApJ...620L..51L, doi:10.1086/428613, S2CID 15340083
- ^ Joergens, V.; Bonnefoy, M.; Liu, Y.; Bayo, A.; Wolf, S.; Chauvin, G.; Rojo, P. (2013). "OTS 44: Disk and accretion at the planetary border". Astronomy & Astrophysics. 558 (7): L7. arXiv:1310.1936. Bibcode:2013A&A...558L...7J. doi:10.1051/0004-6361/201322432. S2CID 118456052.
- ^ a b Bowler, Brendan P.; Hillenbrand, Lynne A. (2015-09-28). "Near-Infrared Spectroscopy of 2M0441+2301 AabBab: A Quadruple System Spanning the Stellar to Planetary Mass Regimes". The Astrophysical Journal. 811 (2): L30. arXiv:1509.01658. Bibcode:2015ApJ...811L..30B. doi:10.1088/2041-8205/811/2/L30. ISSN 2041-8213.
- ^ Etangs, A. Lecavelier des; Lissauer, Jack J. (June 2022). "The IAU Working Definition of an Exoplanet". New Astronomy Reviews. 94: 101641. arXiv:2203.09520. Bibcode:2022NewAR..9401641L. doi:10.1016/j.newar.2022.101641.
- ^ Bowler, Brendan P.; Hillenbrand, Lynne A. (2015). "Near-infrared Spectroscopy of 2M0441+2301 AabBab: A Quadruple System Spanning the Stellar to Planetary Mass Regimes". The Astrophysical Journal. 811 (2): L30. arXiv:1509.01658. Bibcode:2015ApJ...811L..30B. doi:10.1088/2041-8205/811/2/L30. S2CID 22608263.
- ^ a b Guinan, Edward F.; Engle, Scott G.; Durbin, Allyn (2016-04-20). "LIVING WITH A RED DWARF: ROTATION AND X-RAY AND ULTRAVIOLET PROPERTIES OF THE HALO POPULATION KAPTEYN'S STAR*". The Astrophysical Journal. 821 (2): 81. arXiv:1602.01912. Bibcode:2016ApJ...821...81G. doi:10.3847/0004-637X/821/2/81. ISSN 0004-637X.
- ^ Anglada-Escudé, Guillem; et al. (2014), "Two planets around Kapteyn's star : a cold and a temperate super-Earth orbiting the nearest halo red-dwarf", Monthly Notices of the Royal Astronomical Society: Letters, 443: L89 – L93, arXiv:1406.0818, Bibcode:2014MNRAS.443L..89A, doi:10.1093/mnrasl/slu076, S2CID 67807856.
- ^ a b c d e f Currie, Thayne; Lawson, Kellen; Schneider, Glenn; Lyra, Wladimir; Wisniewski, John; Grady, Carol; Guyon, Olivier; Tamura, Motohide; Kotani, Takayuki; Kawahara, Hajime; Brandt, Timothy; Uyama, Taichi; Muto, Takayuki; Dong, Ruobing; Kudo, Tomoyuki (2022-04-04). "Images of embedded Jovian planet formation at a wide separation around AB Aurigae". Nature Astronomy. 6 (6): 751–759. arXiv:2204.00633. Bibcode:2022NatAs...6..751C. doi:10.1038/s41550-022-01634-x. hdl:1887/3561800. ISSN 2397-3366.
- ^ a b c Ginski, Christian (2022-05-09). "A massive gas giant caught in formation". Nature Astronomy. 6 (6): 639–640. Bibcode:2022NatAs...6..639G. doi:10.1038/s41550-022-01665-4. hdl:1887/3561614. ISSN 2397-3366.
- ^ a b c d Zhou, Yifan; Sanghi, Aniket; Bowler, Brendan P.; Wu, Ya-Lin; Close, Laird M.; Long, Feng; Ward-Duong, Kimberly; Zhu, Zhaohuan; Kraus, Adam L.; Follette, Katherine B.; Bae, Jaehan (2022-07-01). "HST/WFC3 Hα Direct-imaging Detection of a Pointlike Source in the Disk Cavity of AB Aur". The Astrophysical Journal Letters. 934 (1): L13. arXiv:2207.06525. Bibcode:2022ApJ...934L..13Z. doi:10.3847/2041-8213/ac7fef. ISSN 2041-8205.
- ^ Rodríguez, Luis F.; Zapata, Luis A.; Dzib, Sergio A.; Ortiz-León, Gisela N.; Loinard, Laurent; Macías, Enrique; Anglada, Guillem (2014-09-09). "An Ionized Outflow from Ab Aur, A Herbig Ae Star with a Transitional Disk". The Astrophysical Journal. 793 (1): L21. arXiv:1408.7068. Bibcode:2014ApJ...793L..21R. doi:10.1088/2041-8205/793/1/L21. ISSN 2041-8213.
- ^ Herczeg, Gregory J.; Hillenbrand, Lynne A. (2014-04-22). "An Optical Spectroscopic Study of T Tauri Stars. I. Photospheric Properties". The Astrophysical Journal. 786 (2): 97. arXiv:1403.1675. Bibcode:2014ApJ...786...97H. doi:10.1088/0004-637X/786/2/97. ISSN 0004-637X.
- ^ Shibaike, Yuhito; Hashimoto, Jun; Dong, Ruobing; Mordasini, Christoph; Fukagawa, Misato; Muto, Takayuki (2025-01-15). "Predictions of Dust Continuum Emission from a Potential Circumplanetary Disk: A Case Study of the Planet Candidate AB Aurigae b". The Astrophysical Journal. 979 (1): 24. arXiv:2412.03923. doi:10.3847/1538-4357/ad9b21. ISSN 0004-637X.
- ^ van Holstein, R.G.; Stolker, T.; Jensen-Clem, R.; Ginski, C.; Milli, J.; de Boer, J.; Girard, J.H.; Wahhaj, Z.; Bohn, A.J.; Millar-Blanchaer, M.A.; Benisty, M.; Bonnefoy, M.; Chauvin, G.; Dominik, C.; Hinkley, S. (March 2021). "A survey of the linear polarization of directly imaged exoplanets and brown dwarf companions with SPHERE-IRDIS: First polarimetric detections revealing disks around DH Tau B and GSC 6214-210 B". Astronomy & Astrophysics. 647: A21. arXiv:2101.04033. Bibcode:2021A&A...647A..21V. doi:10.1051/0004-6361/202039290. ISSN 0004-6361.
- ^ Lazzoni, C.; Zurlo, A.; Desidera, S.; Mesa, D.; Fontanive, C.; Bonavita, M.; Ertel, S.; Rice, K.; Vigan, A.; Boccaletti, A.; Bonnefoy, M.; Chauvin, G.; Delorme, P.; Gratton, R.; Houllé, M. (September 2020). "The search for disks or planetary objects around directly imaged companions: a candidate around DH Tauri B". Astronomy & Astrophysics. 641: A131. arXiv:2007.10097. Bibcode:2020A&A...641A.131L. doi:10.1051/0004-6361/201937290. ISSN 0004-6361.
- ^ a b Xuan, Jerry W.; Bryan, Marta L.; Knutson, Heather A.; Bowler, Brendan P.; Morley, Caroline V.; Benneke, Björn (2020-03-01). "A Rotation Rate for the Planetary-mass Companion DH Tau b". The Astronomical Journal. 159 (3): 97. arXiv:2001.01759. Bibcode:2020AJ....159...97X. doi:10.3847/1538-3881/ab67c4. ISSN 0004-6256.
- ^ a b Martinez, Raquel A.; Kraus, Adam L. (2021-12-23). "A Mid-infrared Study of Directly Imaged Planetary-mass Companions Using Archival Spitzer/IRAC Images". The Astronomical Journal. 163 (1): 36. arXiv:2111.03087. Bibcode:2022AJ....163...36M. doi:10.3847/1538-3881/ac3745. ISSN 0004-6256.
- ^ Schmidt, T. O. B.; Neuhäuser, R.; Seifahrt, A.; Vogt, N.; Bedalov, A.; Helling, Ch.; Witte, S.; Hauschildt, P. H. (2008). "Direct evidence of a sub-stellar companion around CT Chamaeleontis". Astronomy & Astrophysics. 491 (1): 311–320. arXiv:0809.2812. Bibcode:2008A&A...491..311S. doi:10.1051/0004-6361:20078840. S2CID 17161561.
- ^ a b c d Martin, David V.; Sethi, Ritika; et al. (February 2024). "The benchmark M dwarf eclipsing binary CM Draconis with TESS: spots, flares, and ultra-precise parameters". Monthly Notices of the Royal Astronomical Society. 528 (1): 963–975. arXiv:2301.10858. Bibcode:2024MNRAS.528..963M. doi:10.1093/mnras/stae015.
- ^ a b Morales, Juan Carlos; Ribas, Ignasi; Jordi, Carme; Torres, Guillermo; Gallardo, José; Guinan, Edward F.; Charbonneau, David; Wolf, Marek; Latham, David W.; Anglada-Escudé, Guillem; Bradstreet, David H.; Everett, Mark E.; O'Donovan, Francis T.; Mandushev, Georgi; Mathieu, Robert D. (2009-02-01). "Absolute Properties of the Low-Mass Eclipsing Binary Cm Draconis". The Astrophysical Journal. 691 (2): 1400–1411. arXiv:0810.1541. Bibcode:2009ApJ...691.1400M. doi:10.1088/0004-637X/691/2/1400. ISSN 0004-637X.
- ^ Schmidt, T. O. B.; Mugrauer, M.; Neuhäuser, R.; Vogt, N.; Witte, S.; Hauschildt, P. H.; Helling, Ch.; Seifahrt, A. (June 2014). "First spectroscopic observations of the substellar companion of the young debris disk star PZ Telescopii". Astronomy & Astrophysics. 566: A85. arXiv:1404.2870. Bibcode:2014A&A...566A..85S. doi:10.1051/0004-6361/201321625. ISSN 0004-6361.
- ^ Franson, Kyle; Bowler, Brendan P. (2023-06-01). "Dynamical Mass of the Young Brown Dwarf Companion PZ Tel B". The Astronomical Journal. 165 (6): 246. arXiv:2304.01302. Bibcode:2023AJ....165..246F. doi:10.3847/1538-3881/acca18. ISSN 0004-6256.
- ^ Jenkins, J. S.; Pavlenko, Y. V.; Ivanyuk, O.; Gallardo, J.; et al. (2012). "Benchmark Cool Companions: Ages and Abundances for the PZ Telescopii System". Monthly Notices of the Royal Astronomical Society. 420 (4): 3587–98. arXiv:1111.7001. Bibcode:2012MNRAS.420.3587J. doi:10.1111/j.1365-2966.2011.20280.x. S2CID 18735984.
- ^ a b Hurt, Spencer A.; Liu, Michael C.; Zhang, Zhoujian; Phillips, Mark; Allers, Katelyn N.; Deacon, Niall R.; Aller, Kimberly M.; Best, William M. J. (2024-01-01). "Uniform Forward-modeling Analysis of Ultracool Dwarfs. III. Late-M and L Dwarfs in Young Moving Groups, the Pleiades, and the Hyades". The Astrophysical Journal. 961 (1): 121. arXiv:2311.04268. Bibcode:2024ApJ...961..121H. doi:10.3847/1538-4357/ad0b12. ISSN 0004-637X.
- ^ a b Hou, Qiang; Wei, Xing (2022). "Why hot Jupiters can be large but not too large". Monthly Notices of the Royal Astronomical Society. 511 (3): 3133–3137. arXiv:2201.07008. doi:10.1093/mnras/stac169.
- ^ a b c d e f g h i j k l Saha, Suman (September 3, 2024). "Precise Transit Photometry Using TESS II: Revisiting 28 Additional Transiting Systems With Updated Physical Properties". The Astrophysical Journal Supplement Series. 274 (1): 13. arXiv:2407.20846v1. Bibcode:2024ApJS..274...13S. doi:10.3847/1538-4365/ad6a60.
- ^ a b Quanz, Sascha P.; Goldman, Bertrand; Henning, Thomas; Brandner, Wolfgang; Burrows, Adam; Hofstetter, Lorne W. (2010-01-01). "Search for Very Low-Mass Brown Dwarfs and Free-Floating Planetary-Mass Objects in Taurus". The Astrophysical Journal. 708 (1): 770–784. arXiv:0911.1925. Bibcode:2010ApJ...708..770Q. doi:10.1088/0004-637X/708/1/770. ISSN 0004-637X.
- ^ a b "Planet CAHA Tau 1". Encyclopaedia of exoplanetary systems / exoplanet.eu. Retrieved 9 September 2024.
- ^ a b Currie, Thayne; Daemgen, Sebastian; Debes, John; Lafreniere, David; Itoh, Yoichi; Jayawardhana, Ray; Ratzka, Thorsten; Correia, Serge (2013-12-19). "Direct Imaging and Spectroscopy of a Candidate Companion Below/Near the Deuterium-Burning Limit in the Young Binary Star System, ROXs 42B". The Astrophysical Journal. 780 (2): L30. arXiv:1310.4825. Bibcode:2014ApJ...780L..30C. doi:10.1088/2041-8205/780/2/L30. ISSN 2041-8205.
- ^ a b Kraus, Adam L.; Ireland, Michael J.; Cieza, Lucas A.; Hinkley, Sasha; Dupuy, Trent J.; Bowler, Brendan P.; Liu, Michael C. (2013-12-31). "Three Wide Planetary-Mass Companions to FW Tau, ROXs 12, and ROXs 42B". The Astrophysical Journal. 781 (1): 20. arXiv:1311.7664. Bibcode:2014ApJ...781...20K. doi:10.1088/0004-637X/781/1/20. ISSN 0004-637X.
- ^ a b Daemgen, Sebastian; Todorov, Kamen; Silva, Jasmin; Hand, Derek; Garcia, Eugenio V.; Currie, Thayne; Burrows, Adam; Stassun, Keivan G.; Ratzka, Thorsten; Debes, John H.; Lafreniere, David; Jayawardhana, Ray; Correia, Serge (2017-05-01). "Mid-infrared characterization of the planetary-mass companion ROXs 42B b". Astronomy & Astrophysics. 601: A65. arXiv:1702.06549. Bibcode:2017A&A...601A..65D. doi:10.1051/0004-6361/201629949. ISSN 0004-6361.
- ^ a b Currie, Thayne; Burrows, Adam; Daemgen, Sebastian (2014-05-08). "A FIRST-LOOK ATMOSPHERIC MODELING STUDY OF THE YOUNG DIRECTLY IMAGED PLANET-MASS COMPANION, ROXS 42Bb". The Astrophysical Journal. 787 (2): 104. arXiv:1404.0131. Bibcode:2014ApJ...787..104C. doi:10.1088/0004-637X/787/2/104. ISSN 0004-637X.
- ^ a b Inglis, Julie; Wallack, Nicole L.; Xuan, Jerry W.; Knutson, Heather A.; Chachan, Yayaati; Bryan, Marta L.; Bowler, Brendan P.; Iyer, Aishwarya; Kataria, Tiffany; Benneke, Björn; et al. (15 April 2024). "Atmospheric Retrievals of the Young Giant Planet ROXs 42B b from Low- and High-resolution Spectroscopy". The Astronomical Journal. 167 (5): 19. arXiv:2402.09533. Bibcode:2024AJ....167..218I. doi:10.3847/1538-3881/ad2771. ISSN 1538-3881. S2CID 267681834.
- ^ a b c d Gully-Santiago, Michael; Morley, Caroline V.; Luna, Jessica; MacLeod, Morgan; Oklopčić, Antonija; Ganesh, Aishwarya; Tran, Quang H.; Zhang, Zhoujian; Bowler, Brendan P.; Cochran, William D.; Krolikowski, Daniel M.; Mahadevan, Suvrath; Ninan, Joe P.; Stefánsson, Guđmundur; Vanderburg, Andrew (2024-03-01). "A Large and Variable Leading Tail of Helium in a Hot Saturn Undergoing Runaway Inflation". The Astronomical Journal. 167 (4): 142. arXiv:2307.08959. Bibcode:2024AJ....167..142G. doi:10.3847/1538-3881/ad1ee8. ISSN 0004-6256.
- ^ a b c Manitowoc, Terrence Gollata (2018-11-27). "What's the diameter of the largest exoplanet found so far?". Astronomy Magazine. Retrieved 2024-01-03.
- ^ a b Zhou, G.; Bakos, G. á.; Hartman, J. D.; Latham, D. W.; Torres, G.; Bhatti, W.; Penev, K.; Buchhave, L.; Kovács, G.; Bieryla, A.; Quinn, S.; Isaacson, H.; Fulton, B. J.; Falco, E.; Csubry, Z. (2017-05-01). "HAT-P-67b: An Extremely Low Density Saturn Transiting an F-subgiant Confirmed via Doppler Tomography ∗". The Astronomical Journal. 153 (5): 211. arXiv:1702.00106. Bibcode:2017AJ....153..211Z. doi:10.3847/1538-3881/aa674a. ISSN 0004-6256.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab Johns, Daniel; Marti, Connor; Huff, Madison; McCann, Jacob; Wittenmyer, Robert A.; Horner, Jonathan; Wright, Duncan J. (2018-11-01). "Revised Exoplanet Radii and Habitability Using Gaia Data Release 2". The Astrophysical Journal Supplement Series. 239 (1): 14. arXiv:1808.04533. Bibcode:2018ApJS..239...14J. doi:10.3847/1538-4365/aae5fb. ISSN 0067-0049.
- ^ Luhman, K. L.; Adame, Lucía; D'Alessio, Paola; Calvet, Nuria; Hartmann, Lee; Megeath, S. T.; Fazio, G. G. (2005-12-10). "Discovery of a Planetary-Mass Brown Dwarf with a Circumstellar Disk". The Astrophysical Journal. 635 (1): L93 – L96. arXiv:astro-ph/0511807. Bibcode:2005ApJ...635L..93L. doi:10.1086/498868. ISSN 0004-637X.
- ^ a b c d e f g Bryan, Marta L.; Ginzburg, Sivan; Chiang, Eugene; Morley, Caroline; Bowler, Brendan P.; Xuan, Jerry W.; Knutson, Heather A. (2020-12-01). "As the Worlds Turn: Constraining Spin Evolution in the Planetary-mass Regime". The Astrophysical Journal. 905 (1): 37. arXiv:2010.07315. Bibcode:2020ApJ...905...37B. doi:10.3847/1538-4357/abc0ef. ISSN 0004-637X.
- ^ a b c d e Rilinger, Anneliese M.; Espaillat, Catherine C. (November 2021). "Disk Masses and Dust Evolution of Protoplanetary Disks around Brown Dwarfs". The Astrophysical Journal. 921 (2): 182. arXiv:2106.05247. Bibcode:2021ApJ...921..182R. doi:10.3847/1538-4357/ac09e5. ISSN 0004-637X.
- ^ "Planet CFHTWIR-Oph 90". Encyclopaedia of exoplanetary systems / Exoplanet.eu. Retrieved 2024-08-15.
- ^ a b "The Extrasolar Planet Encyclopaedia — SSTB213 J041757". Extrasolar Planets Encyclopaedia. Paris Observatory.
- ^ a b Almenara, J. M; Damiani, C; Bouchy, F; Havel, M; Bruno, G; Hébrard, G; Diaz, R. F; Deleuil, M; Barros, S. C. C; Boisse, I; Bonomo, A. S; Montagnier, G; Santerne, A (2015). "SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: A massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars". Astronomy & Astrophysics. 575: A71. arXiv:1501.01486. Bibcode:2015A&A...575A..71A. doi:10.1051/0004-6361/201424291. S2CID 118701259.
- ^ a b c Wang, J. J.; et al. (2021). "Constraining the Nature of the PDS 70 Protoplanets with VLTI/GRAVITY ∗". The Astronomical Journal. 161 (3): 148. arXiv:2101.04187. Bibcode:2021AJ....161..148W. doi:10.3847/1538-3881/abdb2d. S2CID 231583118.
- ^ a b c Wang 王, J. J. 劲飞; Vigan, A.; Lacour, S.; Nowak, M.; Stolker, T.; De Rosa, R. J.; Ginzburg, S.; Gao, P.; Abuter, R.; Amorim, A.; Asensio-Torres, R.; Bauböck, M.; Benisty, M.; Berger, J. P.; Beust, H. (2021-03-01). "Constraining the Nature of the PDS 70 Protoplanets with VLTI/GRAVITY ∗". The Astronomical Journal. 161 (3): 148. arXiv:2101.04187. Bibcode:2021AJ....161..148W. doi:10.3847/1538-3881/abdb2d. ISSN 0004-6256.
- ^ Benisty, Myriam; Bae, Jaehan; Facchini, Stefano; Keppler, Miriam; Teague, Richard; Isella, Andrea; Kurtovic, Nicolas T.; Pérez, Laura M.; Sierra, Anibal; Andrews, Sean M.; Carpenter, John; Czekala, Ian; Dominik, Carsten; Henning, Thomas; Menard, Francois (2021-07-01). "A Circumplanetary Disk around PDS70c". The Astrophysical Journal Letters. 916 (1): L2. arXiv:2108.07123. Bibcode:2021ApJ...916L...2B. doi:10.3847/2041-8213/ac0f83. ISSN 2041-8205.
- ^ Snellen; Koppenhoefer, J.; Van Der Burg, R. F. J.; Dreizler, S.; Greiner, J.; De Hoon, M. D. J.; Husser, T. O.; Krühler, T.; Saglia, R. P.; Vuijsje, F. N. (2009). "OGLE2-TR-L9b: an exoplanet transiting a rapidly rotating F3 star" (PDF). Astronomy and Astrophysics. 497 (2): 545–550. arXiv:0812.0599. Bibcode:2009A&A...497..545S. doi:10.1051/0004-6361/200810917. S2CID 15639369.
- ^ a b "Planet CFHTWIR-Oph 98 b". Encyclopaedia of exoplanetary systems / Exoplanet.eu. Retrieved 2024-08-15.
- ^ a b c d Fontanive, Clémence; Allers, Katelyn N.; Pantoja, Blake; Biller, Beth; Dubber, Sophie; Zhang, Zhoujian; Dupuy, Trent; Liu, Michael C.; Albert, Loïc (2020-12-01). "A Wide Planetary-mass Companion to a Young Low-mass Brown Dwarf in Ophiuchus". The Astrophysical Journal Letters. 905 (2): L14. arXiv:2011.08871. Bibcode:2020ApJ...905L..14F. doi:10.3847/2041-8213/abcaf8. ISSN 2041-8205.
- ^ a b Martínez, Romy Rodríguez; Gaudi, B. Scott; Rodriguez, Joseph E.; Zhou, George; Labadie-Bartz, Jonathan; Quinn, Samuel N.; Penev, Kaloyan; Tan, Thiam-Guan; Latham, David W.; Paredes, Leonardo A.; Kielkopf, John F.; Addison, Brett; Wright, Duncan J.; Teske, Johanna; Howell, Steve B. (2020-09-01). "KELT-25 b and KELT-26 b: A Hot Jupiter and a Substellar Companion Transiting Young A Stars Observed by TESS*". The Astronomical Journal. 160 (3): 111. arXiv:1912.01017. Bibcode:2020AJ....160..111R. doi:10.3847/1538-3881/ab9f2d. ISSN 0004-6256.
- ^ Lothringer, Joshua D.; Sing, David K.; Rustamkulov, Zafar; Wakeford, Hannah R.; Stevenson, Kevin B.; Nikolov, Nikolay; Lavvas, Panayotis; Spake, Jessica J.; Winch, Autumn T. (2022-04-07). "UV absorption by silicate cloud precursors in ultra-hot Jupiter WASP-178b". Nature. 604 (7904): 49–52. arXiv:2204.03639. Bibcode:2022Natur.604...49L. doi:10.1038/s41586-022-04453-2. ISSN 0028-0836. PMID 35388193.
- ^ Damasceno, Y. C.; et al. (2024). "The atmospheric composition of the ultra-hot Jupiter WASP-178 b observed with ESPRESSO". Astronomy & Astrophysics. 689. EDP Sciences: A54. arXiv:2406.08348. Bibcode:2024A&A...689A..54D. doi:10.1051/0004-6361/202450119. ISSN 0004-6361.
- ^ Chakrabarty, Aritra; Sengupta, Sujan (2019-07-01). "Precise Photometric Transit Follow-up Observations of Five Close-in Exoplanets: Update on Their Physical Properties". The Astronomical Journal. 158 (1): 39. arXiv:1905.11258. Bibcode:2019AJ....158...39C. doi:10.3847/1538-3881/ab24dd. ISSN 0004-6256.
- ^ Collins, Karen A; Kielkopf, John F; Stassun, Keivan G (2017). "Transit Timing Variation Measurements of WASP-12b and Qatar-1b: No Evidence for Additional Planets". The Astronomical Journal. 153 (2): 78. arXiv:1512.00464. Bibcode:2017AJ....153...78C. doi:10.3847/1538-3881/153/2/78. S2CID 55191644.
- ^ Li, Shu-lin; Miller, N.; Lin, Douglas N. C. & Fortney, Jonathan J. (2010). "WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation". Nature. 463 (7284): 1054–1056. arXiv:1002.4608. Bibcode:2010Natur.463.1054L. doi:10.1038/nature08715. PMID 20182506. S2CID 4414948.
- ^ Hubble Finds a Star Eating a Planet nasa.gov. 2010-05-20. Retrieved on 2010-12-10.
- ^ waspplanets (2019-11-26). "The orbit of WASP-12b is decaying". WASP Planets. Retrieved 2020-01-01.
- ^ Wong, Ian; Shporer, Avi; Vissapragada, Shreyas; Greklek-McKeon, Michael; Knutson, Heather A.; Winn, Joshua N.; Benneke, Björn (20 January 2022). "TESS Revisits WASP-12: Updated Orbital Decay Rate and Constraints on Atmospheric Variability". The Astronomical Journal. 163 (4): 175. arXiv:2201.08370. Bibcode:2022AJ....163..175W. doi:10.3847/1538-3881/ac5680. S2CID 246063389.
- ^ Российские астрономы впервые открыли луну возле экзопланеты (in Russian) - "Studying of a curve of change of shine of WASP-12b has brought to the Russian astronomers unusual result: regular splashes were found out.<...> Though stains on a star surface also can cause similar changes of shine, observable splashes are very similar on duration, a profile and amplitude that testifies for benefit of exomoon existence."
- ^ a b c Šubjak, Ján; Latham, David W.; Quinn, Samuel N.; Berlind, Perry; Calkins, Michael L.; Esquerdo, Gilbert A.; Brahm, Rafael; Guenther, Eike; Janík, Jan (2024-03-18), "Evolution of BD-14 3065b (TOI-4987b) from giant planet to brown dwarf as possible evidence of deuterium burning at old stellar ages", Astronomy & Astrophysics, 688: A120, arXiv:2403.12311, Bibcode:2024A&A...688A.120S, doi:10.1051/0004-6361/202349028
- ^ Gaudi, B. Scott; Stassun, Keivan G; Collins, Karen A; Beatty, Thomas G; Zhou, George; Latham, David W; Bieryla, Allyson; Eastman, Jason D; Siverd, Robert J; Crepp, Justin R; Gonzales, Erica J; Stevens, Daniel J; Buchhave, Lars A; Pepper, Joshua; Johnson, Marshall C; Colon, Knicole D; Jensen, Eric L. N; Rodriguez, Joseph E; Bozza, Valerio; Novati, Sebastiano Calchi; d'Ago, Giuseppe; Dumont, Mary T; Ellis, Tyler; Gaillard, Clement; Jang-Condell, Hannah; Kasper, David H; Fukui, Akihiko; Gregorio, Joao; Ito, Ayaka; et al. (2017). "A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host". Nature. 546 (7659): 514–518. arXiv:1706.06723. Bibcode:2017Natur.546..514G. doi:10.1038/nature22392. PMID 28582774. S2CID 205256410.
- ^ Pai Asnodkar, Anusha; Wang 王, Ji 吉; Gaudi, B. Scott; Cauley, P. Wilson; Eastman, Jason D.; Ilyin, Ilya; Strassmeier, Klaus; Beatty, Thomas (2022-02-01). "KELT-9 as an Eclipsing Double-lined Spectroscopic Binary: A Unique and Self-consistent Solution to the System". The Astronomical Journal. 163 (2): 40. arXiv:2110.15275. Bibcode:2022AJ....163...40P. doi:10.3847/1538-3881/ac32c7. ISSN 0004-6256.
- ^ Gaudi, B. Scott; et al. (5 June 2017). "A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host" (pdf). Nature. 546 (7659): 514–518. arXiv:1706.06723. Bibcode:2017Natur.546..514G. doi:10.1038/nature22392. ISSN 1476-4687. PMID 28582774. S2CID 205256410. Retrieved 2017-06-06.
- ^ a b Cabot, Samuel H. C.; Bello-Arufe, Aaron; Mendonça, João M.; Tronsgaard, René; Wong, Ian; Zhou, George; Buchhave, Lars A.; Fischer, Debra A.; Stassun, Keivan G.; Antoci, Victoria; Baker, David; Belinski, Alexander A.; Benneke, Björn; Bouma, Luke G.; Christiansen, Jessie L. (2021-11-01). "TOI-1518b: A Misaligned Ultra-hot Jupiter with Iron in Its Atmosphere". The Astronomical Journal. 162 (5): 218. arXiv:2108.11403. Bibcode:2021AJ....162..218C. doi:10.3847/1538-3881/ac1ba3. ISSN 0004-6256.
- ^ a b Zhou, G.; Huang, C. X.; Bakos, G. á.; Hartman, J. D.; Latham, David W.; Quinn, S. N.; Collins, K. A.; Winn, J. N.; Wong, I.; Kovács, G.; Csubry, Z.; Bhatti, W.; Penev, K.; Bieryla, A.; Esquerdo, G. A. (2019-10-01). "Two New HATNet Hot Jupiters around A Stars and the First Glimpse at the Occurrence Rate of Hot Jupiters from TESS ∗". The Astronomical Journal. 158 (4): 141. arXiv:1906.00462. Bibcode:2019AJ....158..141Z. doi:10.3847/1538-3881/ab36b5. ISSN 0004-6256.
- ^ a b c d e f Hurt, Spencer A.; Liu, Michael C.; Zhang, Zhoujian; Phillips, Mark; Allers, Katelyn N.; Deacon, Niall R.; Aller, Kimberly M.; Best, William M. J. (2024-01-01). "Uniform Forward-modeling Analysis of Ultracool Dwarfs. III. Late-M and L Dwarfs in Young Moving Groups, the Pleiades, and the Hyades". The Astrophysical Journal. 961 (1): 121. arXiv:2311.04268. Bibcode:2024ApJ...961..121H. doi:10.3847/1538-4357/ad0b12. ISSN 0004-637X.
- ^ a b Bento, J; Schmidt, B; Hartman, J. D; Bakos, G. Á; Ciceri, S; Brahm, R; Bayliss, D; Espinoza, N; Zhou, G; Rabus, M; Bhatti, W; Penev, K; Csubry, Z; Jordán, A; Mancini, L; Henning, T; De Val-Borro, M; Tinney, C. G; Wright, D. J; Durkan, S; Suc, V; Noyes, R; Lázár, J; Papp, I; Sári, P (2017). "HATS-22b, HATS-23b and HATS-24b: Three new transiting super-Jupiters from the HATSouth project". Monthly Notices of the Royal Astronomical Society. 468 (1): 835–848. arXiv:1607.00688. Bibcode:2017MNRAS.468..835B. doi:10.1093/mnras/stx500. S2CID 119228961.
- ^ a b c d "Planetary Systems Composite Data". NASA Exoplanet Archive. Retrieved 12 December 2021.
- ^ Fontanive, Clémence; Allers, Katelyn N.; Pantoja, Blake; Biller, Beth; Dubber, Sophie; Zhang, Zhoujian; Dupuy, Trent; Liu, Michael C.; Albert, Loïc (2020-12-01). "A Wide Planetary-mass Companion to a Young Low-mass Brown Dwarf in Ophiuchus". The Astrophysical Journal. 905 (2): L14. arXiv:2011.08871. Bibcode:2020ApJ...905L..14F. doi:10.3847/2041-8213/abcaf8. ISSN 0004-637X.
- ^ a b Fulton, Benjamin J; Collins, Karen A; Gaudi, B. Scott; Stassun, Keivan G; Pepper, Joshua; Beatty, Thomas G; Siverd, Robert J; Penev, Kaloyan; Howard, Andrew W; Baranec, Christoph; Corfini, Giorgio; Eastman, Jason D; Gregorio, Joao; Law, Nicholas M; Lund, Michael B; Oberst, Thomas E; Penny, Matthew T; Riddle, Reed; Rodriguez, Joseph E; Stevens, Daniel J; Zambelli, Roberto; Ziegler, Carl; Bieryla, Allyson; d'Ago, Giuseppe; Depoy, Darren L; Jensen, Eric L. N; Kielkopf, John F; Latham, David W; Manner, Mark; et al. (2015). "KELT-8b: A Highly Inflated Transiting Hot Jupiter and a New Technique for Extracting High-precision Radial Velocities from Noisy Spectra". The Astrophysical Journal. 810 (1): 30. arXiv:1505.06738. Bibcode:2015ApJ...810...30F. doi:10.1088/0004-637X/810/1/30. S2CID 17747458.
- ^ a b c d e f g h i j k Stassun, Keivan G.; Collins, Karen A.; Gaudi, B. Scott (2017-03-01). "Accurate Empirical Radii and Masses of Planets and Their Host Stars with Gaia Parallaxes". The Astronomical Journal. 153 (3): 136. arXiv:1609.04389. Bibcode:2017AJ....153..136S. doi:10.3847/1538-3881/aa5df3. Cite error: The named reference "Stassun-2017" was defined multiple times with different content (see the help page).
- ^ Hartman, J. D; Bakos, G. Á; Torres, G; Latham, D. W; Kovács, G; Béky, B; Quinn, S. N; Mazeh, T; Shporer, A; Marcy, G. W; Howard, A. W; Fischer, D. A; Johnson, J. A; Esquerdo, G. A; Noyes, R. W; Sasselov, D. D; Stefanik, R. P; Fernandez, J. M; Szklenár, T; Lázár, J; Papp, I; Sári, P (2011). "HAT-P-32b and HAT-P-33b: Two Highly Inflated Hot Jupiters Transiting High-Jitter Stars". The Astrophysical Journal. 742 (1): 59. arXiv:1106.1212. Bibcode:2011ApJ...742...59H. doi:10.1088/0004-637X/742/1/59. S2CID 118590713.
- ^ Wang, Yong-Hao; et al. (2017). "Transiting Exoplanet Monitoring Project (TEMP). II. Refined System Parameters and Transit Timing Analysis of HAT-P-33b". The Astronomical Journal. 154 (2). 49. arXiv:1705.08605. Bibcode:2017AJ....154...49W. doi:10.3847/1538-3881/aa7519. S2CID 119245125.
- ^ Hartman, J. D; Bakos, G. Á; Torres, G; Latham, D. W; Kovács, Géza; Béky, B; Quinn, S. N; Mazeh, T; Shporer, A; Marcy, G. W; Howard, A. W; Fischer, D. A; Johnson, J. A; Esquerdo, G. A; Noyes, R. W; Sasselov, D. D; Stefanik, R. P; Fernandez, J. M; Szklenár, T; Lázár, J; Papp, I; Sári, P (2011). "HAT-P-32b and HAT-P-33b: Two Highly Inflated Hot Jupiters Transiting High-jitter Stars". The Astrophysical Journal. 742 (1): 59. arXiv:1106.1212. Bibcode:2011ApJ...742...59H. doi:10.1088/0004-637X/742/1/59. S2CID 118590713.
- ^ a b c d e f Saha, Suman (August 2023). "Precise Transit Photometry Using TESS: Updated Physical Properties for 28 Exoplanets around Bright Stars". The Astrophysical Journal Supplement Series. 268 (1): 2. arXiv:2306.02951. Bibcode:2023ApJS..268....2S. doi:10.3847/1538-4365/acdb6b. ISSN 0067-0049.
- ^ a b Zhang, Yapeng; Snellen, Ignas A. G.; Bohn, Alexander J.; Mollière, Paul; Ginski, Christian; Hoeijmakers, H. Jens; Kenworthy, Matthew A.; Mamajek, Eric E.; Meshkat, Tiffany; Reggiani, Maddalena; Snik, Frans (2021-07-15). "The 13CO-rich atmosphere of a young accreting super-Jupiter". Nature. 595 (7867): 370–372. arXiv:2107.06297. Bibcode:2021Natur.595..370Z. doi:10.1038/s41586-021-03616-x. ISSN 0028-0836. PMID 34262209. S2CID 235829633.
- ^ "The Extrasolar Planet Encyclopaedia - Catalog Listing". Extrasolar Planets Encyclopaedia. 1995.
- ^ Wood, Mackenna L.; Mann, Andrew W.; Barber, Madyson G.; Bush, Jonathan L.; Kraus, Adam L.; Tofflemire, Benjamin M.; Vanderburg, Andrew; Newton, Elisabeth R.; Feiden, Gregory A.; Zhou, George; Bouma, Luke G.; Quinn, Samuel N.; Armstrong, David J.; Osborn, Ares; Adibekyan, Vardan (2023-03-01). "TESS Hunt for Young and Maturing Exoplanets (THYME). IX. A 27 Myr Extended Population of Lower Centaurus Crux with a Transiting Two-planet System". The Astronomical Journal. 165 (3): 85. arXiv:2212.03266. Bibcode:2023AJ....165...85W. doi:10.3847/1538-3881/aca8fc. ISSN 0004-6256.
- ^ Starr, Michelle (14 July 2021). "Isotopes Detected in The Atmosphere of an Exoplanet For The First Time". ScienceAlert. Retrieved 14 July 2021.
- ^ ESO/Bohn (22 July 2020). "First ever image of a multi-planet system around a Sun-like star (uncropped, with annotations)". ESO. European Southern Observatory. Archived from the original on 24 July 2020. Retrieved 24 July 2020.
- ^ Wall, Mike (22 July 2020). "Multiplanet system around sunlike star photographed for 1st time ever - The two newly imaged planets are huge — 14 and 6 times more massive than Jupiter". Space.com. Retrieved 22 July 2020.
- ^ a b Pineda, J. Sebastian; Youngblood, Allison; France, Kevin (2021-09-01). "The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars". The Astrophysical Journal. 918 (1): 40. arXiv:2106.07656. Bibcode:2021ApJ...918...40P. doi:10.3847/1538-4357/ac0aea. ISSN 0004-637X.
- ^ González Hernández, J. I.; et al. (October 2024). "A sub-Earth-mass planet orbiting Barnard's star". Astronomy & Astrophysics. 690: A79. arXiv:2410.00569. Bibcode:2024A&A...690A..79G. doi:10.1051/0004-6361/202451311. A79.
{{cite journal}}
: CS1 maint: numeric names: authors list (link) - ^ Ignas A. G. Snellen; Ernst J. W. de Mooij; Simon Albrecht (2009-05-28). "The changing phases of extrasolar planet CoRoT-1b". Nature. 459 (7246): 543–545. arXiv:0904.1208. Bibcode:2009Natur.459..543S. doi:10.1038/nature08045. PMID 19478779. S2CID 4347612.
- ^ Seidel, J.V.; Ehrenreich, D.; Wyttenbach, A.; Allart, R.; Lendl, M.; Pino, L.; Bourrier, V.; Cegla, H.M.; Lovis, C.; Barrado, D.; Bayliss, D.; Astudillo-Defru, N.; Deline, A.; Fisher, C.; Heng, K.; Joseph, R.; Lavie, B.; Melo, C.; Pepe, F.; Segransan, D.; Udry, S. (27 March 2019). "Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS)★ II. A broadened sodium feature on the ultra-hot giant WASP-76b". Astronomy & Astrophysics. 623: A166. arXiv:1902.00001. Bibcode:2019A&A...623A.166S. doi:10.1051/0004-6361/201834776. S2CID 119348582.
- ^ Deitrick, Russell; Barnes, Rory; McArthur, Barbara; Quinn, Thomas R.; Luger, Rodrigo; Antonsen, Adrienne; Benedict, G. Fritz (2014-12-18). "The 3-dimensional architecture of the Upsilon Andromedae planetary system". The Astrophysical Journal. 798 (1): 46. arXiv:1411.1059. Bibcode:2015ApJ...798...46D. doi:10.1088/0004-637X/798/1/46. ISSN 1538-4357.
- ^ Piskorz, Danielle; Benneke, Björn; Crockett, Nathan R.; Lockwood, Alexandra C.; Blake, Geoffrey A.; Barman, Travis S.; Bender, Chad F.; Carr, John S.; Johnson, John A. (2017-08-01). "Detection of Water Vapor in the Thermal Spectrum of the Non-transiting Hot Jupiter Upsilon Andromedae b". The Astronomical Journal. 154 (2): 78. arXiv:1707.01534. Bibcode:2017AJ....154...78P. doi:10.3847/1538-3881/aa7dd8. ISSN 0004-6256.
- ^ Butler, R. P.; et al. (2006). "Catalog of Nearby Exoplanets". The Astrophysical Journal. 646 (1): 505–522. arXiv:astro-ph/0607493. Bibcode:2006ApJ...646..505B. doi:10.1086/504701. S2CID 119067572. (web version)
- ^ Turner, O. D.; Anderson, D. R.; Cameron, A. Collier; Delrez, L.; Evans, D. F.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B. (2016-06-01). "WASP-120 b, WASP-122 b, and WASP-123 b: Three Newly Discovered Planets from the WASP-South Survey". Publications of the Astronomical Society of the Pacific. 128 (964): 064401. arXiv:1509.02210. Bibcode:2016PASP..128f4401T. doi:10.1088/1538-3873/128/964/064401. hdl:10023/10795. ISSN 0004-6280.
- ^ a b Stevens, Daniel J; Collins, Karen A; Gaudi, B. Scott; Beatty, Thomas G; Siverd, Robert J; Bieryla, Allyson; Fulton, Benjamin J; Crepp, Justin R; Gonzales, Erica J; Coker, Carl T; Penev, Kaloyan; Stassun, Keivan G; Jensen, Eric L. N; Howard, Andrew W; Latham, David W; Rodriguez, Joseph E; Zambelli, Roberto; Bozza, Valerio; Reed, Phillip A; Gregorio, Joao; Buchhave, Lars A; Penny, Matthew T; Pepper, Joshua; Berlind, Perry; Calchi Novati, Sebastiano; Calkins, Michael L; d'Ago, Giuseppe; Eastman, Jason D; Bayliss, D; et al. (2017). "KELT-12b: A P ˜ 5 day, Highly Inflated Hot Jupiter Transiting a Mildly Evolved Hot Star". The Astronomical Journal. 153 (4): 178. arXiv:1608.04714. Bibcode:2017AJ....153..178S. doi:10.3847/1538-3881/aa5ffb. S2CID 27321568.
- ^ a b Bourrier, V.; Ehrenreich, D.; et al. (March 2020). "Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS). III. Atmospheric structure of the misaligned ultra-hot Jupiter WASP-121b". Astronomy & Astrophysics. 635: A205. arXiv:2001.06836. Bibcode:2020A&A...635A.205B. doi:10.1051/0004-6361/201936640.
- ^ Hoeijmakers, H.J.; Seidel, J.V.; Pino, L.; Kitzmann, D.; Sindel, J.P.; Ehrenreich, D.; Oza, A.V.; Bourrier, V.; Allart, R.; Gebek, A.; Lovis, C.; Yurchenko, S.N.; Astudillo-Defru, N.; Bayliss, D.; Cegla, H.; Lavie, B.; Lendl, M.; Melo, C.; Murgas, F.; Nascimbeni, V.; Pepe, F.; Segransan, D.; Udry, S.; Wyttenbach, A.; Heng, K. (18 September 2020). "Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS) - IV. A spectral inventory of atoms and molecules in the high-resolution transmission spectrum of WASP-121 b". Astronomy & Astrophysics. 641: A123. arXiv:2006.11308. Bibcode:2020A&A...641A.123H. doi:10.1051/0004-6361/202038365. S2CID 219966241.
- ^ a b Rodriguez, Joseph E.; Quinn, Samuel N.; Zhou, George; Vanderburg, Andrew; Nielsen, Louise D.; Wittenmyer, Robert A.; Brahm, Rafael; Reed, Phillip A.; Huang, Chelsea X.; Vach, Sydney; Ciardi, David R.; Oelkers, Ryan J.; Stassun, Keivan G.; Hellier, Coel; Gaudi, B. Scott (2021-04-01). "TESS Delivers Five New Hot Giant Planets Orbiting Bright Stars from the Full-frame Images". The Astronomical Journal. 161 (4): 194. arXiv:2101.01726. Bibcode:2021AJ....161..194R. doi:10.3847/1538-3881/abe38a. ISSN 0004-6256.
- ^ a b Grunblatt, Samuel K.; Saunders, Nicholas; Sun, Meng; Chontos, Ashley; Soares-Furtado, Melinda; Eisner, Nora; Pereira, Filipe; Komacek, Thaddeus; Huber, Daniel; Collins, Karen; Wang, Gavin; Stockdale, Chris; Quinn, Samuel N.; Tronsgaard, Rene; Zhou, George (2022-03-01). "TESS Giants Transiting Giants. II. The Hottest Jupiters Orbiting Evolved Stars". The Astronomical Journal. 163 (3): 120. arXiv:2201.04140. Bibcode:2022AJ....163..120G. doi:10.3847/1538-3881/ac4972. ISSN 0004-6256.
- ^ a b Burgasser, Adam J.; Lopez, Mike A.; Mamajek, Eric E.; Gagné, Jonathan; Faherty, Jacqueline K.; Tallis, Melisa; Choban, Caleb; Tamiya, Tomoki; Escala, Ivanna; Aganze, Christian (2016-03-20). "THE FIRST BROWN DWARF/PLANETARY-MASS OBJECT IN THE 32 ORIONIS GROUP*". The Astrophysical Journal. 820 (1): 32. arXiv:1602.03022. Bibcode:2016ApJ...820...32B. doi:10.3847/0004-637X/820/1/32. ISSN 0004-637X.
- ^ a b Espinoza, N; Bayliss, D; Hartman, J. D; Bakos, G. Á; Jordán, A; Zhou, G; Mancini, L; Brahm, R; Ciceri, S; Bhatti, W; Csubry, Z; Rabus, M; Penev, K; Bento, J; De Val-Borro, M; Henning, T; Schmidt, B; Suc, V; Wright, D. J; Tinney, C. G; Tan, T. G; Noyes, R (2016). "HATS-25b through HATS-30b: A Half-dozen New Inflated Transiting Hot Jupiters from the HATSouth Survey". The Astronomical Journal. 152 (4): 108. arXiv:1606.00023. Bibcode:2016AJ....152..108E. doi:10.3847/0004-6256/152/4/108. S2CID 119104881.
- ^ a b c Berger, Travis A.; Huber, Daniel; Gaidos, Eric; van Saders, Jennifer L. (2018-10-01). "Revised Radii of Kepler Stars and Planets Using Gaia Data Release 2". The Astrophysical Journal. 866 (2): 99. arXiv:1805.00231. Bibcode:2018ApJ...866...99B. doi:10.3847/1538-4357/aada83. ISSN 0004-637X.
- ^ Fortney, Jonathan J; Demory, Brice-Olivier; Desert, Jean-Michel; Rowe, Jason; Marcy, Geoffrey W; Isaacson, Howard; Buchhave, Lars A; Ciardi, David; Gautier, Thomas N; Batalha, Natalie M; Caldwell, Douglas A; Bryson, Stephen T; Nutzman, Philip; Jenkins, Jon M; Howard, Andrew; Charbonneau, David; Knutson, Heather A; Howell, Steve B; Everett, Mark; Fressin, Francois; Deming, Drake; Borucki, William J; Brown, Timothy M; Ford, Eric B; Gilliland, Ronald L; Latham, David W; Miller, Neil; Seager, Sara; Fischer, Debra A; et al. (2011). "Discovery and Atmospheric Characterization of Giant Planet Kepler-12b: An Inflated Radius Outlier". The Astrophysical Journal Supplement Series. 197 (1): 9. arXiv:1109.1611. Bibcode:2011ApJS..197....9F. doi:10.1088/0067-0049/197/1/9. S2CID 688362.
- ^ Hartman, J. D; Bakos, G. Á; Bhatti, W; Penev, K; Bieryla, A; Latham, D. W; Kovács, G; Torres, G; Csubry, Z; De Val-Borro, M; Buchhave, L; Kovács, T; Quinn, S; Howard, A. W; Isaacson, H; Fulton, B. J; Everett, M. E; Esquerdo, G; Béky, B; Szklenar, T; Falco, E; Santerne, A; Boisse, I; Hébrard, G; Burrows, A; Lázár, J; Papp, I; Sári, P (2016). "HAT-P-65b and HAT-P-66b: Two Transiting Inflated Hot Jupiters and Observational Evidence for the Reinflation of Close-in Giant Planets". The Astronomical Journal. 152 (6): 182. arXiv:1609.02767. Bibcode:2016AJ....152..182H. doi:10.3847/0004-6256/152/6/182. S2CID 118546031.
- ^ Alvarado-Montes, Jaime A; García-Carmona, Carolina (2019-07-01). "Orbital decay of short-period gas giants under evolving tides". Monthly Notices of the Royal Astronomical Society. 486 (3): 3963–3974. arXiv:1904.07596. doi:10.1093/mnras/stz1081. ISSN 0035-8711.
- ^ Grant, David; Lewis, Nikole K.; Wakeford, Hannah R.; Batalha, Natasha E.; Glidden, Ana; Goyal, Jayesh; Mullens, Elijah; MacDonald, Ryan J.; May, Erin M.; Seager, Sara; Stevenson, Kevin B.; Valenti, Jeff A.; Visscher, Channon; Alderson, Lili; Allen, Natalie H. (2023-10-01). "JWST-TST DREAMS: Quartz Clouds in the Atmosphere of WASP-17b". The Astrophysical Journal Letters. 956 (2): L32. arXiv:2310.08637. Bibcode:2023ApJ...956L..32G. doi:10.3847/2041-8213/acfc3b. ISSN 2041-8205.
- ^ a b Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R. (2017-06-01). "The GAPS Programme with HARPS-N at TNG . XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets". Astronomy and Astrophysics. 602: A107. arXiv:1704.00373. Bibcode:2017A&A...602A.107B. doi:10.1051/0004-6361/201629882. ISSN 0004-6361.
- ^ a b c Anderson, D. R.; et al. (2010). "WASP-17b: An Ultra-Low Density Planet in a Probable Retrograde Orbit". The Astrophysical Journal. 709 (1): 159–167. arXiv:0908.1553. Bibcode:2010ApJ...709..159A. doi:10.1088/0004-637X/709/1/159. S2CID 53628741.
- ^ a b "Composition of cloud particles - hot gas giant exoplanet WASP-17b". October 20, 2023.
- ^ a b Anderson, D. R.; et al. (2010). "WASP-17b: An Ultra-Low Density Planet in a Probable Retrograde Orbit". The Astrophysical Journal. 709 (1): 159–167. arXiv:0908.1553. Bibcode:2010ApJ...709..159A. doi:10.1088/0004-637X/709/1/159. S2CID 53628741.
- ^ a b Kaufman, Rachel (17 August 2009). ""Backward" Planet Has Density of Foam Coffee Cups". National Geographic. National Geographic Society. Archived from the original on August 20, 2009. Retrieved 6 February 2011.
- ^ a b Eastman, Jason D; Beatty, Thomas G; Siverd, Robert J; Antognini, Joseph M. O; Penny, Matthew T; Gonzales, Erica J; Crepp, Justin R; Howard, Andrew W; Avril, Ryan L; Bieryla, Allyson; Collins, Karen; Fulton, Benjamin J; Ge, Jian; Gregorio, Joao; Ma, Bo; Mellon, Samuel N; Oberst, Thomas E; Wang, Ji; Gaudi, B. Scott; Pepper, Joshua; Stassun, Keivan G; Buchhave, Lars A; Jensen, Eric L. N; Latham, David W; Berlind, Perry; Calkins, Michael L; Cargile, Phillip A; Colón, Knicole D; Dhital, Saurav; et al. (2016). "KELT-4Ab: An Inflated Hot Jupiter Transiting the Bright (V ˜ 10) Component of a Hierarchical Triple". The Astronomical Journal. 151 (2): 45. arXiv:1510.00015. Bibcode:2016AJ....151...45E. doi:10.3847/0004-6256/151/2/45. S2CID 17613522.
- ^ a b Bakos, G. á.; Hartman, J. D.; Bhatti, W.; Csubry, Z.; Penev, K.; Bieryla, A.; Latham, D. W.; Quinn, S.; Buchhave, L. A.; Kovács, G.; Torres, Guillermo; Noyes, R. W.; Falco, E.; Béky, Bence; Szklenár, T. (2021-07-01). "HAT-P-58b–HAT-P-64b: Seven Planets Transiting Bright Stars*". The Astronomical Journal. 162 (1): 7. arXiv:2007.05528. Bibcode:2021AJ....162....7B. doi:10.3847/1538-3881/abf637. ISSN 0004-6256.
- ^ a b Smalley, B; Anderson, D. R; Collier-Cameron, A; Doyle, A. P; Fumel, A; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Maxted, P. F. L; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Smith, A. M. S; Southworth, J; Triaud, A. H. M. J; Udry, S; West, R. G (2012). "WASP-78b and WASP-79b: Two highly-bloated hot Jupiter-mass exoplanets orbiting F-type stars in Eridanus". Astronomy & Astrophysics. 547: A61. arXiv:1206.1177. Bibcode:2012A&A...547A..61S. doi:10.1051/0004-6361/201219731. S2CID 119233646.
- ^ Valsecchi, Francesca (2014), "Planets on the Edge", The Astrophysical Journal, 787 (1): L9, arXiv:1403.1870, Bibcode:2014ApJ...787L...9V, doi:10.1088/2041-8205/787/1/L9, S2CID 118451863
- ^ Alsubai, Khalid; Tsvetanov, Zlatan I.; Latham, David W.; Bieryla, Allyson; Pyrzas, Stylianos; Mislis, Dimitris; Esquerdo, Gilbert A.; Esamdin, Ali; Liu, Jinzhong; Ma, Lu; Bretton, Marc; Pallé, Enric; Murgas, Felipe; Vilchez, Nicolas P. E.; Morton, Timothy D. (2019-02-01). "Qatar Exoplanet Survey: Qatar-7b—A Very Hot Jupiter Orbiting a Metal-rich F-Star". The Astronomical Journal. 157 (2): 74. arXiv:1812.05601. Bibcode:2019AJ....157...74A. doi:10.3847/1538-3881/aaf80a. ISSN 0004-6256.
- ^ a b "The Extrasolar Planet Encyclopaedia — SSTB213 J041757 b". Extrasolar Planets Encyclopaedia. Paris Observatory.
- ^ a b Psaridi, Angelica; Bouchy, François; Lendl, Monika; Akinsanmi, Babatunde; Stassun, Keivan G.; Smalley, Barry; Armstrong, David J.; Howard, Saburo; Ulmer-Moll, Solène; Grieves, Nolan; Barkaoui, Khalid; Rodriguez, Joseph E.; Bryant, Edward M.; Suárez, Olga; Guillot, Tristan (2023-07-01). "Three Saturn-mass planets transiting F-type stars revealed with TESS and HARPS: TOI-615b, TOI-622b, and TOI-2641b". Astronomy and Astrophysics. 675: A39. arXiv:2303.15080. Bibcode:2023A&A...675A..39P. doi:10.1051/0004-6361/202346406. ISSN 0004-6361.
- ^ a b Yee, Samuel W.; Winn, Joshua N.; Hartman, Joel D.; Bouma, Luke G.; Zhou, George; Quinn, Samuel N.; Latham, David W.; Bieryla, Allyson; Rodriguez, Joseph E.; Collins, Karen A.; Alfaro, Owen; Barkaoui, Khalid; Beard, Corey; Belinski, Alexander A.; Benkhaldoun, Zouhair (2023-03-01). "The TESS Grand Unified Hot Jupiter Survey. II. Twenty New Giant Planets*". The Astrophysical Journal Supplement Series. 265 (1): 1. arXiv:2210.15473. Bibcode:2023ApJS..265....1Y. doi:10.3847/1538-4365/aca286. ISSN 0067-0049.
- ^ a b Lendl, M.; Csizmadia, Sz.; Deline, A.; Fossati, L.; Kitzmann, D.; Heng, K.; Hoyer, S.; Salmon, S.; Benz, W.; Broeg, C.; Ehrenreich, D.; Fortier, A.; Queloz, D.; Bonfanti, A.; Brandeker, A. (2020-11-01). "The hot dayside and asymmetric transit of WASP-189 b seen by CHEOPS". Astronomy and Astrophysics. 643: A94. arXiv:2009.13403. Bibcode:2020A&A...643A..94L. doi:10.1051/0004-6361/202038677. ISSN 0004-6361.
- ^ a b Kang, Huiyi; Chen, Guo; Palle, Enric; Murgas, Felipe; Garcia, Nestor Abreu; Leon, Jerome de; Enoc, Gareb; Esparza-Borges, Emma; Fukuda, Izuru (2024-05-29), "Simultaneous multicolour transit photometry of hot Jupiters HAT-P-19b, HAT-P-51b, HAT-P-55b, and HAT-P-65b", Monthly Notices of the Royal Astronomical Society, 528 (2): 1930–1944, arXiv:2401.03715, doi:10.1093/mnras/stae072
- ^ Livingston, John H.; Crossfield, Ian J. M.; Petigura, Erik A.; Gonzales, Erica J.; Ciardi, David R.; Beichman, Charles A.; Christiansen, Jessie L.; Dressing, Courtney D.; Henning, Thomas; Howard, Andrew W.; Isaacson, Howard; Fulton, Benjamin J.; Kosiarek, Molly; Schlieder, Joshua E.; Sinukoff, Evan (2018-12-01). "Sixty Validated Planets from K2 Campaigns 5-8". The Astronomical Journal. 156 (6): 277. arXiv:1810.04074. Bibcode:2018AJ....156..277L. doi:10.3847/1538-3881/aae778. ISSN 0004-6256.
- ^ Livingston, John H.; Crossfield, Ian J. M.; Werner, Michael W.; Gorjian, Varoujan; Petigura, Erik A.; Ciardi, David R.; Dressing, Courtney D.; Fulton, Benjamin J.; Hirano, Teruyuki; Schlieder, Joshua E.; Sinukoff, Evan; Kosiarek, Molly; Akeson, Rachel; Beichman, Charles A.; Benneke, Björn (2019-03-01). "Spitzer Transit Follow-up of Planet Candidates from the K2 Mission". The Astronomical Journal. 157 (3): 102. arXiv:1901.05855. Bibcode:2019AJ....157..102L. doi:10.3847/1538-3881/aaff69. ISSN 0004-6256.
- ^ a b c Wu, Ya-Lin; Bowler, Brendan P.; Sheehan, Patrick D.; Close, Laird M.; Eisner, Joshua A.; Best, William M. J.; Ward-Duong, Kimberly; Zhu, Zhaohuan; Kraus, Adam L. (2022-05-01). "ALMA Discovery of a Disk around the Planetary-mass Companion SR 12 c". The Astrophysical Journal Letters. 930 (1): L3. arXiv:2204.06013. Bibcode:2022ApJ...930L...3W. doi:10.3847/2041-8213/ac6420. ISSN 2041-8205.
- ^ a b Kuzuhara, M.; Tamura, M.; Ishii, M.; Kudo, T.; Nishiyama, S.; Kandori, R. (2011-04-01). "The Widest-Separation Substellar Companion Candidate to a Binary T Tauri Star". The Astronomical Journal. 141 (4): 119. Bibcode:2011AJ....141..119K. doi:10.1088/0004-6256/141/4/119. ISSN 0004-6256.
- ^ a b Bowler, Brendan P.; Liu, Michael C.; Kraus, Adam L.; Mann, Andrew W. (2014-03-05). "Spectroscopic Confirmation of Young Planetary-Mass Companions on Wide Orbits". The Astrophysical Journal. 784 (1): 65. arXiv:1401.7668. Bibcode:2014ApJ...784...65B. doi:10.1088/0004-637X/784/1/65. hdl:2152/34644. ISSN 0004-637X.
- ^ Latham, David W.; Borucki, William J.; Koch, David G.; Brown, Timothy M.; Buchhave, Lars A.; Basri, Gibor; Batalha, Natalie M.; Caldwell, Douglas A.; Cochran, William D.; Dunham, Edward W.; Fűrész, Gabor; Gautier, Thomas N.; Geary, John C.; Gilliland, Ronald L.; Howell, Steve B. (2010-04-20). "Kepler-7b: A Transiting Planet With Unusually Low Density". The Astrophysical Journal. 713 (2): L140 – L144. arXiv:1001.0190. Bibcode:2010ApJ...713L.140L. doi:10.1088/2041-8205/713/2/L140. ISSN 2041-8205.
- ^ Latham, David W.; et al. (2010). "Kepler-7b: A Transiting Planet with Unusually Low Density". The Astrophysical Journal Letters. 713 (2): L140 – L144. arXiv:1001.0190. Bibcode:2010ApJ...713L.140L. doi:10.1088/2041-8205/713/2/L140.
- ^ Clavin, Whitney; Johnson, Michele; Cole, Steve (30 September 2013). "NASA Space Telescopes Find Patchy Clouds on Exotic World". NASA. Archived from the original on 17 October 2013. Retrieved 30 September 2013.
- ^ Chu, Jennifer (2 October 2013). "Scientists generate first map of clouds on an exoplanet". MIT. Retrieved 2 January 2014.
- ^ Demory, Brice-Olivier; et al. (2013). "Inference of Inhomogeneous Clouds in an Exoplanet Atmosphere". The Astrophysical Journal Letters. 776 (2): L25. arXiv:1309.7894. Bibcode:2013ApJ...776L..25D. doi:10.1088/2041-8205/776/2/L25. S2CID 701011.
- ^ Bryan, Marta L.; Ginzburg, Sivan; Chiang, Eugene; Morley, Caroline; Bowler, Brendan P.; Xuan, Jerry W.; Knutson, Heather A. (2020-12-01). "As the Worlds Turn: Constraining Spin Evolution in the Planetary-mass Regime". The Astrophysical Journal. 905 (1): 37. arXiv:2010.07315. Bibcode:2020ApJ...905...37B. doi:10.3847/1538-4357/abc0ef. ISSN 0004-637X.
- ^ Bailey, Vanessa; et al. (January 2014). "HD 106906 b: A planetary-mass companion outside a massive debris disk". The Astrophysical Journal Letters. 780 (1): L4. arXiv:1312.1265. Bibcode:2014ApJ...780L...4B. doi:10.1088/2041-8205/780/1/L4. S2CID 119113709.
- ^ Osborne, Hannah (December 6, 2013). "Mystery Planet 'That Shouldn't Exist' Baffles Astronomers". International Business Times. Archived from the original on December 13, 2013. Retrieved December 8, 2013.
- ^ Adams, Arthur D.; Meyer, Michael R.; Howe, Alex R.; Burningham, Ben; Daemgen, Sebastian; Fortney, Jonathan; Line, Mike; Marley, Mark; Quanz, Sascha P.; Todorov, Kamen (2023-11-01). "Atmospheric Retrieval of L Dwarfs: Benchmarking Results and Characterizing the Young Planetary Mass Companion HD 106906 b in the Near-infrared". The Astronomical Journal. 166 (5): 192. arXiv:2309.10188. Bibcode:2023AJ....166..192A. doi:10.3847/1538-3881/acfb87. ISSN 0004-6256.
- ^ Jenner, Lynn (December 9, 2020). "Hubble Pins Down Weird Exoplanet with Far-Flung Orbit". NASA.
- ^ "Hubble Discovers a Strange Exoplanet That Resembles the Long-Sought "Planet Nine"". December 11, 2020.
- ^ a b Kervella, P.; Thévenin, F.; Lovis, C. (2017). "Proxima's orbit around α Centauri". Astronomy & Astrophysics. 598: L7. arXiv:1611.03495. Bibcode:2017A&A...598L...7K. doi:10.1051/0004-6361/201629930. ISSN 0004-6361. S2CID 50867264. Separation: 3.1, left column of page 3; Orbital period and epoch of periastron: Table 3, right column of page 3.
- ^ Kervella, Pierre; Thevenin, Frederic (March 15, 2003). "A family portrait of the Alpha Centauri system: VLT interferometer studies the nearest stars". European Southern Observatory. Retrieved May 10, 2016.
- ^ Anglada, Guillem; Amado, Pedro J; Ortiz, Jose L; Gómez, José F; Macías, Enrique; Alberdi, Antxon; Osorio, Mayra; Gómez, José L; de Gregorio-Monsalvo, Itziar; Pérez-Torres, Miguel A; Anglada-Escudé, Guillem; Berdiñas, Zaira M; Jenkins, James S; Jimenez-Serra, Izaskun; Lara, Luisa M; López-González, Maria J; López-Puertas, Manuel; Morales, Nicolas; Ribas, Ignasi; Richards, Anita M. S; Rodríguez-López, Cristina; Rodriguez, Eloy (2017). "ALMA Discovery of Dust Belts Around Proxima Centauri". The Astrophysical Journal. 850 (1): L6. arXiv:1711.00578. Bibcode:2017ApJ...850L...6A. doi:10.3847/2041-8213/aa978b. S2CID 13431834.
- ^ Artigau, Étienne; Cadieux, Charles; Cook, Neil J.; Doyon, René; Vandal, Thomas; et al. (June 23, 2022). "Line-by-line velocity measurements, an outlier-resistant method for precision velocimetry". The Astronomical Journal. 164:84 (3) (published August 8, 2022): 18pp. arXiv:2207.13524. Bibcode:2022AJ....164...84A. doi:10.3847/1538-3881/ac7ce6.
- ^ Chilcote, Jeffrey; Pueyo, Laurent; De Rosa, Robert J.; Vargas, Jeffrey; Macintosh, Bruce; Bailey, Vanessa P.; Barman, Travis; Bauman, Brian; Bruzzone, Sebastian; Bulger, Joanna; Burrows, Adam S.; Cardwell, Andrew; Chen, Christine H.; Cotten, Tara; Dillon, Daren (2017-04-01). "1 to 2.4 micron Near-IR spectrum of the Giant Planet $\beta$ Pictoris b obtained with the Gemini Planet Imager". The Astronomical Journal. 153 (4): 182. arXiv:1703.00011. doi:10.3847/1538-3881/aa63e9. ISSN 0004-6256.
- ^ Feng, Fabo; Butler, R. Paul; Vogt, Steven S.; Clement, Matthew S.; Tinney, C. G.; Cui, Kaiming; Aizawa, Masataka; Jones, Hugh R. A.; Bailey, J.; Burt, Jennifer; Carter, B. D.; Crane, Jeffrey D.; Dotti, Francesco Flammini; Holden, Bradford; Ma, Bo (2022-09-01). "3D Selection of 167 Substellar Companions to Nearby Stars". The Astrophysical Journal Supplement Series. 262 (1): 21. arXiv:2208.12720. Bibcode:2022ApJS..262...21F. doi:10.3847/1538-4365/ac7e57. ISSN 0067-0049.
- ^ "Length of Exoplanet Day Measured for First Time / VLT measures the spin of Beta Pictoris b". April 30, 2014.
- ^ Cowen, R. (April 30, 2014). "First exoplanet seen spinning". Nature. doi:10.1038/nature.2014.15132. S2CID 123849861.
- ^ Poon, Michael; Rein, Hanno; Pham, Dang (2024-12-08). "A potential exomoon from the predicted planet obliquity of <a:math xmlns:a="http://www.w3.org/1998/Math/MathML"> <a:mi>β</a:mi> </a:math> Pictoris b". The Open Journal of Astrophysics. 7. arXiv:2412.05988. doi:10.33232/001c.127130.
- ^ a b Carter, Aarynn L.; Hinkley, Sasha; Kammerer, Jens; Skemer, Andrew; Biller, Beth A.; Leisenring, Jarron M.; Millar-Blanchaer, Maxwell A.; Petrus, Simon; Stone, Jordan M.; Ward-Duong, Kimberly; Wang, Jason J.; Girard, Julien H.; Hines, Dean C.; Perrin, Marshall D.; Pueyo, Laurent (2023-07-06). "The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems I: High Contrast Imaging of the Exoplanet HIP 65426 b from 2-16 μm". The Astrophysical Journal Letters. 951 (1): L20. arXiv:2208.14990. Bibcode:2023ApJ...951L..20C. doi:10.3847/2041-8213/acd93e.
- ^ "James Webb Discovery - First Direct Image of Exoplanet - HIP 65426 b". www.jameswebbdiscovery.com. Retrieved 2024-02-20.
- ^ "Astronomers Directly Image Super-Jupiter around HIP 65426 | Astronomy | Sci-News.com". Breaking Science News | Sci-News.com. Retrieved 2019-08-02.
- ^ "Holiday Special: Eight nights of Exoplanet Light". Exoplanet Exploration: Planets Beyond our Solar System. NASA. 14 December 2017. Retrieved 2019-08-03.
- ^ "Odd planetary system around fast-spinning star doesn't quite fit existing models of planet formation". phys.org. Retrieved 2019-08-03.
- ^ a b c d e f Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R. (June 2017). "The GAPS Programme with HARPS-N at TNG: XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets⋆". Astronomy & Astrophysics. 602: A107. arXiv:1704.00373. Bibcode:2017A&A...602A.107B. doi:10.1051/0004-6361/201629882. ISSN 0004-6361.
- ^ a b c "NASA's Spitzer First To Crack Open Light of Faraway Worlds". Archived from the original on July 15, 2007.
- ^ a b c Richardson, L. Jeremy; Deming, D; Horning, K; Seager, S; Harrington, J; et al. (2007). "A spectrum of an extrasolar planet". Nature. 445 (7130): 892–895. arXiv:astro-ph/0702507. Bibcode:2007Natur.445..892R. doi:10.1038/nature05636. PMID 17314975. S2CID 4415500.
- ^ Rebolo, Rafael (2014). "Teide 1 and the Discovery of Brown Dwarfs". In Joergens, Viki (ed.). 50 Years of Brown Dwarfs – From Prediction to Discovery to Forefront of Research. Astrophysics and Space Science Library. Vol. 401. Springer. pp. 25–50. Bibcode:2014ASSL..401...25R. doi:10.1007/978-3-319-01162-2_4. ISBN 978-3-319-01162-2.
- ^ Rebolo, R.; Osorio, M. R. Zapatero; Martín, E. L. (1995-09-14). "Discovery of a brown dwarf in the Pleiades star cluster". Nature. 377 (6545): 129–131. Bibcode:1995Natur.377..129R. doi:10.1038/377129a0. ISSN 0028-0836.
- ^ Rebolo, R.; Martín, E. L.; Basri, G.; Marcy, G. W.; Zapatero-Osorio, M. R. (1996-09-20). "Brown Dwarfs in the Pleiades Cluster Confirmed by the Lithium Test". The Astrophysical Journal. 469 (1): L53 – L56. arXiv:astro-ph/9607002. Bibcode:1996ApJ...469L..53R. doi:10.1086/310263.
- ^ Harvard University and Smithsonian Institution (2003-01-08). "New World of Iron Rain". Astrobiology Magazine. Archived from the original on 2010-01-10. Retrieved 2010-01-25.
- ^ Daemgen, S.; Hormuth, F.; Brandner, W.; Bergfors, C.; Janson, M.; Hippler, S.; Henning, T. (May 2009). "Binarity of transit host stars: Implications for planetary parameters". Astronomy & Astrophysics. 498 (2): 567–574. arXiv:0902.2179. Bibcode:2009A&A...498..567D. doi:10.1051/0004-6361/200810988. ISSN 0004-6361.
- ^ Spring, E. F.; Birkby, J. L.; Pino, L.; Alonso, R.; Hoyer, S.; Young, M. E.; Coelho, P. R. T.; Nespral, D.; López-Morales, M. (2022). "Black Mirror: The impact of rotational broadening on the search for reflected light from 51 Pegasi b with high resolution spectroscopy". Astronomy & Astrophysics. 659: A121. arXiv:2201.03600. Bibcode:2022A&A...659A.121S. doi:10.1051/0004-6361/202142314. S2CID 245853836.
- ^ a b c Martins, J. H. C; Santos, N. C; Figueira, P; Faria, J. P; Montalto, M; Boisse, I; Ehrenreich, D; Lovis, C; Mayor, M; Melo, C; Pepe, F; Sousa, S. G; Udry, S; Cunha, D (2015). "Evidence for a spectroscopic direct detection of reflected light from 51 Pegasi b". Astronomy & Astrophysics. 576: A134. arXiv:1504.05962. Bibcode:2015A&A...576A.134M. doi:10.1051/0004-6361/201425298. S2CID 119224213.
- ^ "First visible light detected directly from an exoplanet". Physicworld. 2015-04-22.
- ^ Lacour, S.; Nowak, M.; Wang, J.; Pfuhl, O.; Eisenhauer, F.; Abuter, R.; Amorim, A.; Anugu, N.; Benisty, M.; Berger, J. P.; Beust, H.; Blind, N.; Bonnefoy, M.; Bonnet, H.; Bourget, P. (March 2019). "First direct detection of an exoplanet by optical interferometry; Astrometry and K-band spectroscopy of HR8799 e". Astronomy & Astrophysics. 623: L11. arXiv:1903.11903. Bibcode:2019A&A...623L..11G. doi:10.1051/0004-6361/201935253. ISSN 0004-6361. S2CID 85542913.
- ^ Brandt, G. Mirek; Brandt, Timothy D.; Dupuy, Trent J.; Michalik, Daniel; Marleau, Gabriel-Dominique (2021-07-01). "The First Dynamical Mass Measurement in the HR 8799 System". The Astrophysical Journal Letters. 915 (1): L16. arXiv:2105.12820. Bibcode:2021ApJ...915L..16B. doi:10.3847/2041-8213/ac0540. ISSN 2041-8205.
- ^ a b Agol, Eric; Dorn, Caroline; Grimm, Simon L.; Turbet, Martin; Ducrot, Elsa; Delrez, Laetitia; Gillon, Michaël; Demory, Brice-Olivier; Burdanov, Artem; Barkaoui, Khalid; Benkhaldoun, Zouhair; Bolmont, Emeline; Burgasser, Adam; Carey, Sean; de Wit, Julien (2021-02-01). "Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides". The Planetary Science Journal. 2 (1): 1. arXiv:2010.01074. Bibcode:2021PSJ.....2....1A. doi:10.3847/PSJ/abd022. ISSN 2632-3338.
- ^ Delrez, L.; Murray, C. A.; Pozuelos, F. J.; Narita, N.; Ducrot, E.; Timmermans, M.; Watanabe, N.; Burgasser, A. J.; Hirano, T.; Rackham, B. V.; Stassun, K. G.; Van Grootel, V.; Aganze, C.; Cointepas, M.; Howell, S. (November 2022). "Two temperate super-Earths transiting a nearby late-type M dwarf". Astronomy & Astrophysics. 667: A59. arXiv:2209.02831. Bibcode:2022A&A...667A..59D. doi:10.1051/0004-6361/202244041. ISSN 0004-6361.
- ^ Agol et al. 2021, p. 14.
- ^ Heising, Matthew Z.; Sasselov, Dimitar D.; Hernquist, Lars; Luisa Tió Humphrey, Ana (1 June 2021). "How Flat Can a Planetary System Get? I. The Case of TRAPPIST-1". The Astrophysical Journal. 913 (2): 126. Bibcode:2021ApJ...913..126H. doi:10.3847/1538-4357/abf8a8. S2CID 219262616.
- ^ Burgasser, Adam J.; Mamajek, Eric E. (2017-08-20). "On the Age of the TRAPPIST-1 System". The Astrophysical Journal. 845 (2): 110. arXiv:1706.02018. Bibcode:2017ApJ...845..110B. doi:10.3847/1538-4357/aa7fea. ISSN 0004-637X.
- ^ Knutson, Heather A.; Charbonneau, David; et al. (May 2007). "A map of the day-night contrast of the extrasolar planet HD 189733b". Nature. 447 (7141): 183–186. arXiv:0705.0993. Bibcode:2007Natur.447..183K. doi:10.1038/nature05782. PMID 17495920.
- ^ Berdyugina, S.V.; Berdyugin, A.V.; Fluri, D.M.; Piirola, V. (2011). "Polarized reflected light from the exoplanet HD189733b: First multicolor observations and confirmation of detection". Astrophysical Journal Letters. 726 (1): L6 – L9. arXiv:1101.0059. Bibcode:2011ApJ...728L...6B. doi:10.1088/2041-8205/728/1/L6. S2CID 59160192.
- ^ Evans, Thomas M.; Pont, Frédéric; et al. (August 2013). "The Deep Blue Color of HD 189733b: Albedo Measurements with Hubble Space Telescope/Space Telescope Imaging Spectrograph at Visible Wavelengths". The Astrophysical Journal Letters. 772 (2): L16. arXiv:1307.3239. Bibcode:2013ApJ...772L..16E. doi:10.1088/2041-8205/772/2/L16. S2CID 38344760.
- ^ Kramer, Miriam (30 November 2001). "For First Time, Alien Planet's True Color Revealed: 'Deep Cobalt Blue'". SpaceNews. Retrieved 2024-01-28.
- ^ "Exoplanet Catalog - HD 189733 b". Exoplanet Exploration: Planets Beyond our Solar System. 22 April 2019. Retrieved 2024-01-28.
- ^ Klotz, Irene (November 16, 2015). "Exoplanet's Global Winds Let Rip at 5,400 MPH". Space. Retrieved 2015-11-17.
- ^ a b Luhman, K. L.; Tremblin, P.; Birkmann, S. M.; Manjavacas, E.; Valenti, J.; Alves de Oliveira, C.; Beck, T. L.; Giardino, G.; Lützgendorf, N.; Rauscher, B. J.; Sirianni, M. (2023-06-01). "JWST/NIRSpec Observations of the Planetary Mass Companion TWA 27B*". The Astrophysical Journal Letters. 949 (2): L36. arXiv:2305.18603. Bibcode:2023ApJ...949L..36L. doi:10.3847/2041-8213/acd635. ISSN 2041-8205.
- ^ "2M1207 b - First image of an exoplanet - NASA Science". science.nasa.gov. 26 April 2010. Retrieved 2025-01-07.
- ^ "2M1207b - first image of an exoplanet". European Southern Observatory. Retrieved 2025-01-07.
- ^ "Official Working Definition of an Exoplanet". IAU position statement. Retrieved 29 November 2020.
- ^ Lecavelier des Etangs, A.; Lissauer, Jack J. (June 2022). "The IAU working definition of an exoplanet". New Astronomy Reviews. 94: 101641. arXiv:2203.09520. Bibcode:2022NewAR..9401641L. doi:10.1016/j.newar.2022.101641. S2CID 247065421.
- ^ Britt, Robert Roy (April 30, 2005). "Fresh Debate over First Photo of Extrasolar Planet". Space.com. Retrieved June 16, 2008.
- ^ "The brown dwarf 2M1207 and its planetary companion". European Southern Observatory. Retrieved 2025-01-07.
- ^ "Artist's View of a Super-Jupiter around a Brown Dwarf (2M1207)". Esa Hubble. Retrieved 2025-01-07.
- ^ "2MASS J12073346-3932539 Overview". NASA Exoplanet Archive.
- ^ "The Extrasolar Planet Encyclopaedia — 2M1207 b". Extrasolar Planets Encyclopaedia. Paris Observatory.
- ^ Margot, Jean-Luc; Gladman, Brett; Yang, Tony (2024-07-10), "Quantitative Criteria for Defining Planets", The Planetary Science Journal, 5 (7): 159, arXiv:2407.07590, Bibcode:2024PSJ.....5..159M, doi:10.3847/PSJ/ad55f3
- ^ a b Cifuentes, C.; Caballero, J. A.; Cortés-Contreras, M.; Montes, D.; Abellán, F. J.; Dorda, R.; Holgado, G.; Zapatero Osorio, M. R.; Morales, J. C.; Amado, P. J.; Passegger, V. M.; Quirrenbach, A.; Reiners, A.; Ribas, I.; Sanz-Forcada, J. (October 2020). "CARMENES input catalogue of M dwarfs: V. Luminosities, colours, and spectral energy distributions". Astronomy & Astrophysics. 642: A115. arXiv:2007.15077. Bibcode:2020A&A...642A.115C. doi:10.1051/0004-6361/202038295. ISSN 0004-6361.
- ^ a b Filippazzo, Joseph C.; Rice, Emily L.; Faherty, Jacqueline; Cruz, Kelle L.; Van Gordon, Mollie M.; Looper, Dagny L. (2015). "Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime". The Astrophysical Journal. 810 (2): 158. arXiv:1508.01767. Bibcode:2015ApJ...810..158F. doi:10.1088/0004-637X/810/2/158. S2CID 89611607.
- ^ Dieterich, Sergio B.; Henry, Todd J.; Jao, Wei-Chun; Winters, Jennifer G.; Hosey, Altonio D.; Riedel, Adric R.; Subasavage, John P. (May 2014). "The Solar Neighborhood XXXII. The Hydrogen Burning Limit". The Astronomical Journal. 147 (5). article id 94. arXiv:1312.1736. Bibcode:2014AJ....147...94D. doi:10.1088/0004-6256/147/5/94. S2CID 21036959.
- ^ "GJ 900 b - NASA Science". science.nasa.gov. 31 May 2024. Retrieved 2024-06-20.
- ^ Rothermich, Austin; Faherty, Jacqueline K.; Bardalez-Gagliuffi, Daniella; Schneider, Adam C.; Kirkpatrick, J. Davy; Meisner, Aaron M.; Burgasser, Adam J.; Kuchner, Marc; Allers, Katelyn; Gagné, Jonathan; Caselden, Dan; Calamari, Emily; Popinchalk, Mark; Suárez, Genaro; Gerasimov, Roman (2024-06-01). "89 New Ultracool Dwarf Comoving Companions Identified with the Backyard Worlds: Planet 9 Citizen Science Project". The Astronomical Journal. 167 (6): 253. arXiv:2403.04592. Bibcode:2024AJ....167..253R. doi:10.3847/1538-3881/ad324e. ISSN 0004-6256.
- ^ Carmichael, Theron W (2023-01-17). "Improved radius determinations for the transiting brown dwarf population in the era of Gaia and TESS". Monthly Notices of the Royal Astronomical Society. 519 (4): 5177–5190. arXiv:2212.02502. Bibcode:2023MNRAS.519.5177C. doi:10.1093/mnras/stac3720. ISSN 0035-8711.
- ^ Deleuil, M.; et al. (2008). "Transiting exoplanets from the CoRoT space mission. VI. CoRoT-Exo-3b: the first secure inhabitant of the brown-dwarf desert". Astronomy and Astrophysics. 491 (3): 889–897. arXiv:0810.0919. Bibcode:2008A&A...491..889D. doi:10.1051/0004-6361:200810625. S2CID 8944836.
- ^ "Definition of a "Planet"". Working Group on Extrasolar Planets (WGESP) of the International Astronomical Union. Archived from the original on 2012-07-02. Retrieved 2009-03-27.
- ^ Mordasini, C.; et al. (2007). "Giant Planet Formation by Core Accretion". arXiv:0710.5667v1 [astro-ph].
- ^ "Kepler-90 h". NASA Exoplanet Archive. Retrieved 15 July 2016.
- ^ Liang, Yan; Robnik, Jakob; Seljak, Uroš (2021), "Kepler-90: Giant Transit-timing Variations Reveal a Super-puff", The Astronomical Journal, 161 (4): 202, arXiv:2011.08515, Bibcode:2021AJ....161..202L, doi:10.3847/1538-3881/abe6a7, S2CID 226975548
- ^ a b Dupuy, Trent J.; Kraus, Adam L. (2013-09-27). "Distances, Luminosities, and Temperatures of the Coldest Known Substellar Objects". Science. 341 (6153): 1492–1495. arXiv:1309.1422. Bibcode:2013Sci...341.1492D. doi:10.1126/science.1241917. ISSN 0036-8075. PMID 24009359.
- ^ Leggett, S. K.; Tremblin, P.; Esplin, T. L.; Luhman, K. L.; Morley, Caroline V. (2017-06-20). "The Y-type Brown Dwarfs: Estimates of Mass and Age from New Astrometry, Homogenized Photometry, and Near-infrared Spectroscopy". The Astrophysical Journal. 842 (2): 118. arXiv:1704.03573. Bibcode:2017ApJ...842..118L. doi:10.3847/1538-4357/aa6fb5. ISSN 0004-637X.
- ^ Lecavelier des Etangs, A.; Lissauer, Jack J. (June 2022). "The IAU working definition of an exoplanet". New Astronomy Reviews. 94: 101641. arXiv:2203.09520. Bibcode:2022NewAR..9401641L. doi:10.1016/j.newar.2022.101641. IAU website link
- ^ a b "Planets and Pluto: Physical Characteristics". ssd.jpl.nasa.gov. Jet Propulsion Laboratory. Retrieved 7 September 2024.
- ^ a b Jerry Coffey (8 July 2008). "What is the Biggest Planet in the Solar System?". Universe Today. Archived from the original on 16 November 2014. Retrieved 7 November 2014.
- ^ a b c d e Nayakshin, Sergei; Elbakyan, Vardan (2024-01-23). "On the origin of accretion bursts in FU Ori". Monthly Notices of the Royal Astronomical Society. 528 (2): 2182–2198. arXiv:2309.12072. Bibcode:2024MNRAS.528.2182N. doi:10.1093/mnras/stae049. ISSN 0035-8711.
- ^ a b c d Nayakshin, Sergei; Owen, James E; Elbakyan, Vardan (2023-05-23). "Extreme evaporation of planets in hot thermally unstable protoplanetary discs: the case of FU Ori". Monthly Notices of the Royal Astronomical Society. 523 (1): 385–403. arXiv:2305.03392. Bibcode:2023MNRAS.523..385N. doi:10.1093/mnras/stad1392. ISSN 0035-8711.
- ^ "Planet FU Ori b". Encyclopaedia of exoplanetary systems / exoplanet.eu. Retrieved 2024-10-11.
- ^ a b c d e f g h i j k l m Mékarnia, D.; Guillot, T.; Rivet, J.-P.; Schmider, F.-X.; Abe, L.; Gonçalves, I.; Agabi, A.; Crouzet, N.; Fruth, T.; Barbieri, M.; Bayliss, D. D. R.; Zhou, G.; Aristidi, E.; Szulagyi, J.; Daban, J.-B. (2016-11-21). "Transiting planet candidates with ASTEP 400 at Dome C, Antarctica". Monthly Notices of the Royal Astronomical Society. 463 (1): 45–62. Bibcode:2016MNRAS.463...45M. doi:10.1093/mnras/stw1934. ISSN 0035-8711.
- ^ "The Extrasolar Planet Encyclopaedia — KOI-7073 b". Extrasolar Planets Encyclopaedia. Paris Observatory. 2019.
- ^ "The Extrasolar Planet Encyclopaedia — 19g-2-01326 b". Extrasolar Planets Encyclopaedia. Paris Observatory. 2013.
- ^ a b Yakovlev, O. Ya.; Valeev, A. F.; Valyavin, G. G.; Tavrov, A. V.; Aitov, V. N.; Mitiani, G. Sh.; Beskin, G. M.; Korablev, O. I.; Galazutdinov, G. A.; Vlasyuk, V. V.; Emelyanov, E. V.; Fatkhullin, T. A.; Sasyuk, V. V.; Perkov, A. V.; Bondar’, S. F. (March 2023). "Eight Exoplanet Candidates in SAO Survey". Astrophysical Bulletin. 78 (1): 79–93. arXiv:2304.01076. Bibcode:2023AstBu..78...79Y. doi:10.1134/S1990341323010108. ISSN 1990-3413.
- ^ a b c d e f Nguyen, Kendra T.; Caldwell, Douglas A.; Twicken, Joseph D.; Striegel, Stephanie L.; Ting, Eric B.; Williams, Rosemary H.; Jenkins, Jon M. (October 2022). "Release of TESS Objects of Interest from TESS-SPOC Sectors 48 to 50 Full Frame Images". Research Notes of the AAS. 6 (10): 207. Bibcode:2022RNAAS...6..207N. doi:10.3847/2515-5172/ac983a. ISSN 2515-5172.
- ^ Nardiello, D; Piotto, G; Deleuil, M; Malavolta, L; Montalto, M; Bedin, L R; Borsato, L; Granata, V; Libralato, M; Manthopoulou, E E (2020-07-11). "A PSF-based Approach to TESS High quality data Of Stellar clusters (PATHOS) – II. Search for exoplanets in open clusters of the Southern ecliptic hemisphere and their frequency". Monthly Notices of the Royal Astronomical Society. 495 (4): 4924–4942. arXiv:2005.12281. Bibcode:2020MNRAS.495.4924N. doi:10.1093/mnras/staa1465. ISSN 0035-8711.
- ^ Wallace, Joshua J.; Hartman, Joel D.; Bakos, Gáspár Á. (2020-03-01). "A Search for Transiting Planets in the Globular Cluster M4 with K2: Candidates and Occurrence Limits". The Astronomical Journal. 159 (3): 106. arXiv:2001.08362. Bibcode:2020AJ....159..106W. doi:10.3847/1538-3881/ab66b4. ISSN 0004-6256.
- ^ Lester, Kathryn V.; Howell, Steve B.; Ciardi, David R.; Matson, Rachel A. (2022-08-01). "Determining Which Binary Component Hosts the TESS Transiting Planet". The Astronomical Journal. 164 (2): 56. arXiv:2206.02825. Bibcode:2022AJ....164...56L. doi:10.3847/1538-3881/ac75ee. ISSN 0004-6256.
- ^ a b Palma-Bifani, P.; Chauvin, G.; Bonnefoy, M.; Rojo, P. M.; Petrus, S.; Rodet, L.; Langlois, M.; Allard, F.; Charnay, B.; Desgrange, C.; Homeier, D.; Lagrange, A.-M.; Beuzit, J.-L.; Baudoz, P.; Boccaletti, A. (February 2023). "Peering into the young planetary system AB Pic: Atmosphere, orbit, obliquity, and second planetary candidate". Astronomy & Astrophysics. 670: A90. arXiv:2211.01474. Bibcode:2023A&A...670A..90P. doi:10.1051/0004-6361/202244294. ISSN 0004-6361.
- ^ Chauvin, G.; Lagrange, A.-M.; Zuckerman, B.; Dumas, C.; Mouillet, D.; Song, I.; Beuzit, J.-L.; Lowrance, P.; Bessel, M. S. (2005-07-18). "A Companion to AB Pic at the Planet/brown Dwarf Boundary". Letter to the Editor. Astronomy & Astrophysics. 438 (3). EDP Sciences: L29 – L32. arXiv:astro-ph/0504658. Bibcode:2005A&A...438L..29C. doi:10.1051/0004-6361:200500111. Archived from the original on 2024-11-17.
- ^ Neuhaeuser, Ralph (30 Sep 2005). "Homogeneous Comparison of Directly Detected Planet Candidates: GQ Lup, 2M1207, AB Pic". arXiv:astro-ph/0509906.
- ^ Palma-Bifani, P.; et al. (2023), "Peering into the young planetary system AB Pic", Astronomy & Astrophysics, 670: A90, arXiv:2211.01474, Bibcode:2023A&A...670A..90P, doi:10.1051/0004-6361/202244294, S2CID 253265148
- ^ a b c d Yee, Samuel W.; Winn, Joshua N.; Hartman, Joel D.; Rodriguez, Joseph E.; Zhou, George; Quinn, Samuel N.; Latham, David W.; Bieryla, Allyson; Collins, Karen A.; Addison, Brett C.; Angelo, Isabel; Barkaoui, Khalid; Benni, Paul; Boyle, Andrew W.; Brahm, Rafael (2022-08-01). "The TESS Grand Unified Hot Jupiter Survey. I. Ten TESS Planets". The Astronomical Journal. 164 (2): 70. arXiv:2205.09728. Bibcode:2022AJ....164...70Y. doi:10.3847/1538-3881/ac73ff. ISSN 0004-6256.
- ^ a b Galazutdinov, G A; Baluev, R V; Valyavin, G; Aitov, V; Gadelshin, D; Valeev, A; Sendzikas, E; Sokov, E; Mitiani, G; Burlakova, T; Yakunin, I; Antonyuk, K A; Vlasyuk, V; Romanyuk, I; Rzaev, A (2023-11-21). "Doppler confirmation of TESS planet candidate TOI−1408.01: grazing transit and likely eccentric orbit". Monthly Notices of the Royal Astronomical Society: Letters. 526 (1): L111 – L115. arXiv:2309.03009. doi:10.1093/mnrasl/slad127. ISSN 1745-3925.
- ^ a b c Korth, Judith; Chaturvedi, Priyanka; Parviainen, Hannu; Carleo, Ilaria; Endl, Michael; Guenther, Eike W.; Nowak, Grzegorz; Persson, Carina M.; MacQueen, Phillip J.; Mustill, Alexander J.; Cabrera, Juan; Cochran, William D.; Lillo-Box, Jorge; Hobbs, David; Murgas, Felipe (August 2024). "TOI-1408: Discovery and Photodynamical Modeling of a Small Inner Companion to a Hot Jupiter Revealed by Transit Timing Variations". The Astrophysical Journal Letters. 971 (2): L28. arXiv:2407.17798. Bibcode:2024ApJ...971L..28K. doi:10.3847/2041-8213/ad65fd. ISSN 2041-8205.
- ^ Boss, Alan (June 1997). "Giant Planet Formation by Gravitational Instability". Science. 276 (5320): 1836–1839. Bibcode:1997Sci...276.1836B. doi:10.1126/science.276.5320.1836.
- ^ "Hubble Finds a Planet Forming in an Unconventional Way". HubbleSite.org. April 4, 2022. Retrieved April 10, 2022.
- ^ Wang 王劲, Jason J. 飞; Ginzburg, Sivan; Ren 任, Bin 彬; Wallack, Nicole; Gao, Peter; Mawet, Dimitri; Bond, Charlotte Z.; Cetre, Sylvain; Wizinowich, Peter; De Rosa, Robert J.; Ruane, Garreth; Liu, Michael C.; Absil, Olivier; Alvarez, Carlos; Baranec, Christoph (2020-06-01). "Keck/NIRC2 L'-band Imaging of Jovian-mass Accreting Protoplanets around PDS 70". The Astronomical Journal. 159 (6): 263. arXiv:2004.09597. Bibcode:2020AJ....159..263W. doi:10.3847/1538-3881/ab8aef. ISSN 0004-6256.
- ^ Zhou, G; Bakos, G. Á; Hartman, J. D; Latham, D. W; Torres, G; Bhatti, W; Penev, K; Buchhave, L; Kovács, G; Bieryla, A; Quinn, S; Isaacson, H; Fulton, B. J; Falco, E; Csubry, Z; Everett, M; Szklenar, T; Esquerdo, G; Berlind, P; Calkins, M. L; Béky, B; Knox, R. P; Hinz, P; Horch, E. P; Hirsch, L; Howell, S. B; Noyes, R. W; Marcy, G; De Val-Borro, M; et al. (2017). "HAT-P-67b: An Extremely Low Density Saturn Transiting an F-subgiant Confirmed via Doppler Tomography". The Astronomical Journal. 153 (5): 211. arXiv:1702.00106. Bibcode:2017AJ....153..211Z. doi:10.3847/1538-3881/aa674a. S2CID 119491990.
- ^ Crouzet, N; McCullough, P. R; Long, D; Montanes Rodriguez, P; Lecavelier Des Etangs, A; Ribas, I; Bourrier, V; Hébrard, G; Vilardell, F; Deleuil, M; Herrero, E; Garcia-Melendo, E; Akhenak, L; Foote, J; Gary, B; Benni, P; Guillot, T; Conjat, M; Mékarnia, D; Garlitz, J; Burke, C. J; Courcol, B; Demangeon, O (2017-02-03). "Discovery of XO-6b: A Hot Jupiter Transiting a Fast Rotating F5 Star on an Oblique Orbit". The Astronomical Journal. 153 (3): 94. arXiv:1612.02776. Bibcode:2017AJ....153...94C. doi:10.3847/1538-3881/153/3/94. S2CID 119082666.
- ^ Mandushev, Georgi; O'Donovan, Francis T.; Charbonneau, David; Torres, Guillermo; Latham, David W.; Bakos, Gáspár Á.; Dunham, Edward W.; Sozzetti, Alessandro; Fernández, José M.; Esquerdo, Gilbert A.; Everett, Mark E.; Brown, Timothy M.; Rabus, Markus; Belmonte, Juan A.; Hillenbrand, Lynne A. (2007-10-01). "TrES-4: A Transiting Hot Jupiter of Very Low Density". The Astrophysical Journal. 667 (2): L195 – L198. arXiv:0708.0834. Bibcode:2007ApJ...667L.195M. doi:10.1086/522115. ISSN 0004-637X.
- ^ a b Luhman, K. L.; Wilson, J. C.; Brandner, W.; Skrutskie, M. F.; Nelson, M. J.; Smith, J. D.; Peterson, D. E.; Cushing, M. C.; Young, E. (October 2006). "Discovery of a Young Substellar Companion in Chamaeleon". The Astrophysical Journal. 649 (2): 894–899. arXiv:astro-ph/0609187. Bibcode:2006ApJ...649..894L. doi:10.1086/506517. ISSN 0004-637X.
- ^ a b Itoh, Yoichi; Hayashi, Masahiko; Tamura, Motohide; Tsuji, Takashi; Oasa, Yumiko; Fukagawa, Misato; Hayashi, Saeko S.; Naoi, Takahiro; Ishii, Miki; Mayama, Satoshi; Morino, Jun-ichi; Yamashita, Takuya; Pyo, Tae-Soo; Nishikawa, Takayuki; Usuda, Tomonori (2005-02-20). "A Young Brown Dwarf Companion to DH Tauri". The Astrophysical Journal. 620 (2): 984–993. arXiv:astro-ph/0411177. Bibcode:2005ApJ...620..984I. doi:10.1086/427086. ISSN 0004-637X.
- ^ Xuan, Jerry W.; Bryan, Marta L.; Knutson, Heather A.; Bowler, Brendan P.; Morley, Caroline V.; Benneke, Björn (2020-02-10). "A Rotation Rate for the Planetary-Mass Companion DH Tau b". The Astronomical Journal. 159 (3): 97. arXiv:2001.01759. Bibcode:2020AJ....159...97X. doi:10.3847/1538-3881/ab67c4. ISSN 1538-3881. S2CID 210023665.
- ^ a b Charbonneau, David; Brown, Timothy M.; Latham, David W.; Mayor, Michel (2000-01-20). "Detection of Planetary Transits Across a Sun-like Star". The Astrophysical Journal. 529 (1): L45 – L48. arXiv:astro-ph/9911436. Bibcode:2000ApJ...529L..45C. doi:10.1086/312457. PMID 10615033.
- ^ a b Ignas A. G. Snellen; De Kok; De Mooij; Albrecht; et al. (2010). "The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b". Nature. 465 (7301): 1049–1051. arXiv:1006.4364. Bibcode:2010Natur.465.1049S. doi:10.1038/nature09111. PMID 20577209. S2CID 205220901.
- ^ Neuhäuser, R.; Guenther, E. W.; Wuchterl, G.; Mugrauer, M.; Bedalov, A.; Hauschildt, P. H. (May 2005). "Evidence for a co-moving sub-stellar companion of GQ Lup". Astronomy & Astrophysics. 435 (1): L13 – L16. arXiv:astro-ph/0503691. Bibcode:2005A&A...435L..13N. doi:10.1051/0004-6361:200500104. ISSN 0004-6361.
- ^ Neuhäuser, R.; Mugrauer, M.; Seifahrt, A.; Schmidt, T. O. B.; Vogt, N. (June 2008). "Astrometric and photometric monitoring of GQ Lupi and its sub-stellar companion". Astronomy & Astrophysics. 484 (1): 281–291. arXiv:0801.2287. Bibcode:2008A&A...484..281N. doi:10.1051/0004-6361:20078493. ISSN 0004-6361.
- ^ a b Sigurdsson, S.; Richer, H.B.; Hansen, B.M.; Stairs I.H.; Thorsett, S.E. (2003). "A Young White Dwarf Companion to Pulsar B1620-26: Evidence for Early Planet Formation". Science. 301 (5630): 193–196. arXiv:astro-ph/0307339. Bibcode:2003Sci...301..193S. doi:10.1126/science.1086326. PMID 12855802. S2CID 39446560.
- ^ Britt, Robert Roy (2003). "Primeval Planet: Oldest Known World Conjures Prospect of Ancient Life" (PDF). Space.com. Archived from the original (PDF) on 2013-12-19. Retrieved 2013-12-19.
- ^ "Oldest Known Planet Identified". HubbleSite. Archived from the original on 2008-05-17. Retrieved 2006-05-07.
- ^ Konacki, Maciej; Wolszczan, Alex (2003-07-10). "Masses and Orbital Inclinations of Planets in the PSR B1257+12 System". The Astrophysical Journal. 591 (2): L147 – L150. arXiv:astro-ph/0305536. Bibcode:2003ApJ...591L.147K. doi:10.1086/377093. ISSN 0004-637X.
- ^ "Pulsar Planets". Archived from the original on 30 December 2005.
- ^ Wolszczan, A.; Frail, D. (1992). "A planetary system around the millisecond pulsar PSR1257 + 12". Nature. 355 (6356): 145–147. Bibcode:1992Natur.355..145W. doi:10.1038/355145a0. S2CID 4260368.
- ^ Wang, Sharon Xuesong; et al. (2012). "The Discovery of HD 37605c and a Dispositive Null Detection of Transits of HD 37605b". The Astrophysical Journal. 761 (1): 46–59. arXiv:1210.6985. Bibcode:2012ApJ...761...46W. doi:10.1088/0004-637X/761/1/46. S2CID 118679173.
- ^ a b Kane, Stephen R. & Gelino, Dawn M. (2012). "Distinguishing between stellar and planetary companions with phase monitoring". Monthly Notices of the Royal Astronomical Society. 424 (1): 779–788. arXiv:1205.5812. Bibcode:2012MNRAS.424..779K. doi:10.1111/j.1365-2966.2012.21265.x. S2CID 15537565.
- ^ "The fight over who really found the first exoplanet". Discover Magazine. April 22, 2019. Retrieved December 14, 2019.
- ^ Kiefer, F.; Hébrard, G.; Lecavelier des Etangs, A.; Martioli, E.; Dalal, S.; Vidal-Madjar, A. (January 2021). "Determining the true mass of radial-velocity exoplanets with Gaia: Nine planet candidates in the brown dwarf or stellar regime and 27 confirmed planets". Astronomy & Astrophysics. 645: A7. arXiv:2009.14164. Bibcode:2021A&A...645A...7K. doi:10.1051/0004-6361/202039168. ISSN 0004-6361.
- ^ Knudstrup, E.; Lund, M. N.; Fredslund Andersen, M.; Rørsted, J. L.; Pérez Hernández, F.; Grundahl, F.; Pallé, P. L.; Stello, D.; White, T. R.; Kjeldsen, H.; Vrard, M.; Winther, M. L.; Handberg, R.; Simón-Díaz, S. (July 2023). "Solar-like oscillations in γ Cephei A as seen through SONG and TESS: A seismic study of γ Cephei A". Astronomy & Astrophysics. 675: A197. arXiv:2306.09769. Bibcode:2023A&A...675A.197K. doi:10.1051/0004-6361/202346707. ISSN 0004-6361.
- ^ Campbell, Bruce; Walker, G. A. H.; Yang, S. (August 1988). "A search for substellar companions to solar-type stars". The Astrophysical Journal. 331: 902. Bibcode:1988ApJ...331..902C. doi:10.1086/166608. ISSN 0004-637X.
- ^ Lawton, A. T.; Wright, P. (July 1989). "A planetary system for Gamma Cephei?". Journal of the British Interplanetary Society. 42 (42): 335–336. Bibcode:1989JBIS...42..335L.
- ^ Walker, Gordon A. H.; Bohlender, David A.; Walker, Andrew R.; Irwin, Alan W.; Yang, Stephenson L. S.; Larson, Ana (September 1992). "Gamma Cephei - Rotation or planetary companion?". The Astrophysical Journal. 396: L91. Bibcode:1992ApJ...396L..91W. doi:10.1086/186524. ISSN 0004-637X.
- ^ Hatzes, Artie P.; Cochran, William D.; Endl, Michael; McArthur, Barbara; Paulson, Diane B.; Walker, Gordon A. H.; Campbell, Bruce; Yang, Stephenson (2003-12-20). "A Planetary Companion to γ Cephei A". The Astrophysical Journal. 599 (2): 1383–1394. arXiv:astro-ph/0305110. Bibcode:2003ApJ...599.1383H. doi:10.1086/379281. ISSN 0004-637X.