Jump to content

2025 in archosaur paleontology

From Wikipedia, the free encyclopedia
List of years in archosaur paleontology
In paleontology
2022
2023
2024
2025
2026
2027
2028
In paleobotany
2022
2023
2024
2025
2026
2027
2028
In arthropod paleontology
2022
2023
2024
2025
2026
2027
2028
In paleoentomology
2022
2023
2024
2025
2026
2027
2028
In paleomalacology
2022
2023
2024
2025
2026
2027
2028
In reptile paleontology
2022
2023
2024
2025
2026
2027
2028
In paleomammalogy
2022
2023
2024
2025
2026
2027
2028
In paleoichthyology
2022
2023
2024
2025
2026
2027
2028

This article records new taxa of fossil archosaurs of every kind that are scheduled described during the year 2025, as well as other significant discoveries and events related to paleontology of archosaurs that are scheduled to occur in the year 2025.

Pseudosuchians

[edit]

New pseudosuchian taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Image

Kuttysuchus[1]

Gen. et sp. nov

Haldar, Ray & Bandyopadhyay

Late Triassic

Lower Dharmaram Formation

 India

An aetosaur belonging to the tribe Paratypothoracini. The type species is K. minori.

Pattisaura[2]

Gen. et sp. nov

Valid

Wu et al.

Late Triassic

Cooper Canyon Formation

 United States
( Texas)

An early member of Crocodylomorpha. The type species is P. gracilis.

Tewkensuchus[3] Gen. et sp. nov Valid Bravo et al. Early Paleocene Salamanca Formation  Argentina A sebecosuchian. The type species is T. salamanquensis

Thilastikosuchus[4]

Gen. et sp. nov

Valid

Carvalho et al.

Early Cretaceous

Quiricó Formation

 Brazil

A notosuchian. The type species is T. scutorectangularis.

General pseudosuchian research

[edit]

Aetosaur research

[edit]

Crocodylomorph research

[edit]
  • A study on the diversity of cranial shapes of crocodylomorphs throughout their evolutionary history is published by Melstrom et al. (2025), who find that crocodylomorphs with generalist dietary ecology were most likely to survive and diversify after mass extinction events.[9]
  • A study on bone histology of Trialestes romeri, providing evidence of a rapid growth rate, is published by Ponce, Cerda & Desojo (2025).[10]
  • A study on the biodiversity of thalattosuchians throughout their evolutionary history, attempting to identify factors driving thalattosuchian evolution, is published by Forêt et al. (2025).[11]
  • Redescription of Macrospondylus bollensis is published by Johnson et al. (2025).[12]
  • A study on metabolic rates of notosuchians, providing evidence of mass-independent maximal metabolic rates that were higher than those of extant crocodilians but lower than those of monitor lizards, in published by Sena et al. (2025).[13]
  • The first histological study of appendicular bones of a peirosaurid is published by Navarro et al. (2025), who interpret their findings as indicative of different growth dynamics of the studied individual compared to other notosuchians.[14]
  • Fossil material of a member or a relative of the genus Sebecus is described from the late Neogene strata of the Yanigua/Los Haitises Formation (Dominican Republic) by Viñola López et al. (2025).[15]
  • Kuzmin et al. (2025) describe the braincase osteology and neuroanatomy of Paralligator, and interpret their findings as indicative of similarity of brain modifications during ontogeny in paralligatorids and extant crocodilians.[16]
  • A study on the anatomy and affinities of the first specimens of Borealosuchus from earliest Paleocene of Colorado, filling temporal and geographical gaps in the fossil record of members of the genus, is published by Lessner, Petermann & Lyson (2025).[17]
  • Walter et al. (2025) study the phylogenetic affinities of Deinosuchus and recover it as a member of the crocodylian stem group.[18]
  • Evidence from the study of the bone histology of Diplocynodon hantoniensis, interpreted as indicative of a similar growth rate in D. hantoniensis and the American alligator, is published by Hoffman et al. (2025).[19]
  • Description of the anatomy of the inner skull cavities of Diplocynodon tormis is published by Serrano-Martínez et al. (2025).[20]
  • Pligersdorffer, Burke & Mannion (2025) reconstruct the endocranial anatomy of Argochampsa krebsi, and report evidence of presence of salt glands in the studied gavialoid.[21]
  • Evidence of variability of the skull morphology of extant Nile crocodiles and broad-snouted crocodilians from the Paleogene strata in the Faiyum Governorate and Miocene strata from the Wadi Moghra site (Egypt) is presented by El-Degwi et al. (2025).[22]

Non-avian dinosaurs

[edit]

New dinosaur taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Ahvaytum[23]

Gen. et sp. nov

Lovelace et al.

Late Triassic (Carnian)

Popo Agie Formation

 United States
( Wyoming)

An early saurischian, possibly a basal sauropodomorph. The type species is A. bahndooiveche.

Archaeocursor[24]

Gen. et sp. nov

Valid

Yao et al.

Early Jurassic (SinemurianPliensbachian)

Ziliujing Formation

 China

A basal ornithischian. The type species is A. asiaticus. Announced in 2024; the final article version was published in 2025.

Chadititan[25]

Gen. et sp. nov

Valid

Agnolín et al.

Late Cretaceous (Campanian)

Anacleto Formation

 Argentina

A rinconsaurian titanosaur. The type species is C. calvoi.

Cienciargentina[26]

Gen. et sp. nov

Simón & Salgado

Late Cretaceous (Cenomanian-Turonian)

Huincul Formation

 Argentina

A rebbachisaurid sauropod. The type species is C. sanchezi.

Duonychus[27]

Gen. et sp. nov

Valid

Kobayashi et al

Late Cretaceous (CenomanianConiacian)

Bayanshiree Formation

 Mongolia

A therizinosaurid theropod. The type species is D. tsogtbaatari.

Duonychus_Restoration

Dzharacursor[28]

Gen. et comb. nov

Averianov & Sues

Late Cretaceous (Turonian)

Bissekty Formation

 Uzbekistan

An ornithomimid theropod. The type species is "Archaeornithomimus" bissektensis Nesov (1995).

Emiliasaura[29]

Gen. et sp. nov

Valid

Coria et al.

Early Cretaceous (Valanginian)

Mulichinco Formation

 Argentina

An ornithopod belonging to the group Rhabdodontomorpha. The type species is E. alessandrii. Announced in 2024; the final article version was published in 2025.

Huadanosaurus[30]

Gen. et sp. nov

Qiu et al.

Early Cretaceous (Barremian)

Yixian Formation

 China

A compsognathid-like theropod belonging to the group Sinosauropterygidae. The type species is H. sinensis.

Mexidracon[31]

Gen. et sp. nov

In press

Serrano-Brañas et al.

Late Cretaceous (Campanian)

Cerro del Pueblo Formation

 Mexico

An ornithomimid theropod. The type species is M. longimanus.

Obelignathus[32]

Gen. et comb. nov

Valid

Czepiński & Madzia

Late Cretaceous (Campanian-Maastrichtian)

Argiles et Grès à Reptiles Formation

 France

An ornithopod belonging to the group Rhabdodontomorpha. The type species is "Rhabdodon" septimanicus Buffetaut & Le Loeuff (1991).

Petrustitan[33]

Gen. et comb. nov

Díez Díaz et al.

Late Cretaceous (Maastrichtian)

Sînpetru Formation

 Romania

A titanosaur sauropod. The type species is "Magyarosaurus" hungaricus Huene (1932).

Qianjiangsaurus[34]

Gen. et sp. nov

Valid

Dai et al.

Late Cretaceous

Zhengyang Formation

 China

An early-diverging hadrosauromorph. The type species is Q. changshengi. Announced in 2024; the final article version was published in 2025.

Sinosauropteryx lingyuanensis[30]

Sp. nov

Qiu et al.

Early Cretaceous (Barremian)

Yixian Formation

 China

A compsognathid-like theropod; a species of Sinosauropteryx.

Tameryraptor[35]

Gen. et sp. nov

Valid

Kellermann, Cuesta & Rauhut

Late Cretaceous (Cenomanian)

Bahariya Formation

 Egypt

A carcharodontosaurid theropod. The type species is T. markgrafi.

Uriash[33]

Gen. et sp. nov

Díez Díaz et al.

Late Cretaceous (Maastrichtian)

Densuș-Ciula Formation

 Romania

A titanosaur sauropod. The type species is U. kadici.

Xingxiulong yueorum[36]

Sp. nov

Chen et al.

Early Jurassic

Lufeng Formation

 China

A massopodan sauropodomorph; a species of Xingxiulong.

Yuanmouraptor[37]

Gen. et sp. nov

Valid

Zou et al.

Middle Jurassic

Zhanghe Formation

 China

A metriacanthosaurid theropod. The type species is Y. jinshajiangensis.

Yuanyanglong[38]

Gen. et sp. nov

Valid

Hao et al.

Early Cretaceous

Miaogou Formation

 China

An oviraptorosaurian theropod. The type species is Y. bainian. Announced in 2024; the final article version was published in 2025.

General non-avian dinosaur research

[edit]
  • Maidment and Butler (2025) review the state of dinosaur taxonomy and attempt to determine the geographical areas and time periods likely to offer the best opportunities for major new discoveries.[39]
  • Heath et al. (2025) use historical biogeographic estimation methods to estimate the distribution of early dinosaurs and their relatives, and consider low-latitude Gondwana to be the most likely area of origin of dinosaurs, and possibly of archosaurs in general.[40]
  • Review of sources of information about dinosaur locomotion, and of studies of dinosaur locomotion from the preceding years, is published by Falkingham (2025).[41]
  • Review of studies of dinosaur reproduction and ontogeny, and of challenges in the studies of dinosaur reproductive biology, is published by Chapelle, Griffin & Pol (2025).[42]
  • Schweitzer et al. (2025) study the composition of vascular-like microstructures isolated from dinosaur fossils from the Judith River and Hell Creek formations, and interpret their findings as supporting endogeneity of the studied structures, but also report the presence of microorganismal components in the studied samples.[43]
  • Evidence of the presence of a strong connective tissue in the cheek region of dinosaur skulls, linking the zygoma and mandible in dinosaurs, is presented by Sharpe et al. (2025).[44]
  • Review of the fossil record of Triassic-Jurassic dinosaurs and other reptiles from the Connecticut Valley (Connecticut and Massachusetts, United States) is published by Galton, Regalado Fernández & Farlow (2025), who consider Ammosaurus major to be a separate taxon from Anchisaurus polyzelus.[45]
  • Milàn & Vallon (2025) study dinosaur tracks from the Middle Jurassic Bagå Formation (Denmark), interpreted as evidence of presence of a diverse dinosaur fauna unknown from skeletal remains.[46]
  • Deiques et al. (2025) report the discovery of new dinosaur tracks from the Upper Jurassic Guará Formation (Brazil), including second record of an ankylosaur track and the best preserved theropod track from the formation reported to date.[47]
  • Yu et al. (2025) report the discovery of new tyrannosaurid, dromaeosaurid (dromaeosaurine and velociraptorine), titanosaur and hadrosauroid teeth from the Upper Cretaceous Nenjiang Formation, providing new information on the diversity of Late Cretaceous dinosaurs from the Songliao Basin (China).[48]
  • A study on habitat preferences of Campanian and Maastrichtian dinosaurs from south-western Europe is published by Vázquez López et al. (2025).[49]
  • A study on the structure of the latest Cretaceous dinosaur fossil record from North America is published by Dean et al. (2025), who argue that research on diversity dynamics of dinosaurs before the Cretaceous–Paleogene extinction event is hampered by geological sampling biases.[50]

Saurischian research

[edit]
  • Garcia, Martínez & Müller (2025) identify pathological marks on the skull bones of herrerasaurid specimens representing the oldest record of pathologies in dinosaurs reported to date, and interpret those lesions as likely resulting from agonistic behaviour of the studied dinosaurs.[51]
  • Theropod and sauropod trace fossils, including possible drag marks and evidence of trampling, are described from the Lower Jurassic Kota Formation (India) by Rozario & Dasgupta (2025).[52]
  • New assemblage of theropod and sauropod tracks produced in a lagoonal margin environment is described from the Middle Jurassic Kilmaluag Formation (United Kingdom) by Blakesley et al. (2025).[53]
  • A study on the purported swimming sauropod trail from the Mayan Dude Ranch tracksite in the Lower Cretaceous Glen Rose Formation (Texas, United States), as well as on the second manus-dominated sauropod trackway and on the theropod track from the same track horizon, is published by Adams et al. (2025), who interpret the studied tracks as unlikely to be produced by dinosaurs that buoyed in deep water.[54]
  • A tooth of a theropod distinct from Sinotyrannus, as well as a titanosauriform tooth representing the youngest sauropod fossil from the Jehol Biota reported to date, are described from the Lower Cretaceous Jiufotang Formation (China) by Yin et al. (2025).[55]

Theropod research

[edit]
  • A study on the shape and growth of snouts and beaks of extinct theropods and extant birds, providing evidence of a conserved growth pattern of the rostrum throughout the evolutionary history of theropods, is published by Garland et al. (2025).[56]
  • Marques et al. (2025) compare the performance of different machine learning models used for identification of isolated theropod teeth.[57]
  • Piñuela et al. (2025) report the discovery of a theropod footprint preserved with a detached sandstone undertrack from the Upper Jurassic Lastres Formation (Spain), providing evidence of foot movement through the sediment and evidence of changes of footprint morphology at different levels of sediment depth, with some of the successive footprint outlines showing similarities to footprints of members of different dinosaur groups; the authors also reevaluate the type series of the ichnotaxon Iguanodontipus, and argue that some of the studied footprints might have been produced by a theropod.[58]
  • Evidence from the study of theropod tracks from the Maastrichtian strata from the Torotoro National Park (Bolivia), indicating that the formation of tail traces associated with the studied trackways was related to walking kinematics of theropods in soft substrate, is presented by McLarty et al. (2025).[59]
  • Indeterminate theropod phalanges with similarities to phalanges of digging mammals are described from the Turonian Bissekty Formation (Uzbekistan) by Averianov (2025).[60]
  • A study on bone histology of Ceratosaurus, providing evidence of faster growth rate than in Late Cretaceous members of Ceratosauria, is published by Sombathy, O'Connor & D'Emic (2025).[61]
  • A study on the body size evolution in Ceratosauria, providing evidence of a trend towards decreased body size in noasaurids and of constraints on the increase of body size in abelisaurids, is published by Seculi Pereyra, Pérez & Méndez (2025).[62]
  • A study on the maxillary shape of abelisaurids and its relation to feeding ecology is published by Seculi Pereyra et al. (2025), who find evidence of morphological similarities between the maxillae of Spectrovenator and Late Cretaceous abelisaurids, interpreted as likely to be specialist hunters holding and killing prey with their jaws.[63]
  • Redescription of the anatomy of the appendicular skeleton of Piatnitzkysaurus floresi and a study on the phylogenetic affinities of this species is published by Pradelli, Pol & Ezcurra (2025).[64]
  • Theropod teeth identified as belonging to members of the groups Spinosauridae, Metriacanthosauridae, Allosauria and Tyrannosauroidea are described from the Upper Jurassic to Lower Cretaceous Khorat Group (Thailand) by Chowchuvech et al. (2025), who interpret the studied teeth as suggestive of a theropod faunal turnover during the Early Cretaceous.[65]
  • Isasmendi et al. (2025) describe new fossil material of early-branching tetanurans and baryonychine spinosaurids from the Lower Cretaceous Golmayo Formation (Spain), including a large-bodied baryonychine from the Zorralbo I locality.[66]
  • Evidence indicating that oxygen isotope composition in tooth dentine of Spinosaurus aegyptiacus can be used as a proxy for environmental reconstructions is presented by Liu et al. (2025), who record oxygen isotope variability in the dentine of the studied theropod, interpreted as likely reflecting seasonal environmental changes.[67]
  • Kotevski et al. (2025) describe new fossil material of theropods from the Lower Cretaceous Strzelecki Group and Eumeralla Formation (Australia), including the first carcharodontosaurian fossils from Australia, bones of large-bodied megaraptorids and a tibia of a member of Unenlagiinae.[68]
  • Averianov et al. (2025) describe a maxilla of a member of the genus Ulughbegsaurus from the Cenomanian Khodzhakul Formation (Uzbekistan), and interpret its morphology as supporting the attribution of Ulughbegsaurus to the family Carcharodontosauridae.[69]
  • Calvo et al. (2025) report the first discovery of the humerus of an adult specimen of Megaraptor namunhuaiquii from the Upper Cretaceous Portezuelo Formation (Argentina), and interpret its anatomy as indicating that M. namunhuaiquii and Gualicho shinyae were not closely related.[70]
  • A study on the evolution of adaptations to cursoriality in the hindlimbs of theropod dinosaurs and on the origin of arctometatarsus in members of Coelurosauria is published by Kubo & Kobayashi (2025)[71]
  • Voris et al. (2025) study changes of the endocranial morphology of Gorgosaurus libratus during its ontogeny, and report that endocasts of juvenile Gorgosaurus show better defined details of the brain morphology compared to mature specimens.[72]
  • Scherer (2025) reeavulates evidence for anagenesis in tyrannosaurine tyrannosaurids, and recovers species belonging to the genus Daspletosaurus as forming an evolutionary grade within Tyrannosaurinae, but does not recover Daspletosaurus as a direct ancestor of Tyrannosaurini.[73]
  • Warner-Cowgill et al. (2025) describe a new specimen of Daspletosaurus from the Judith River Formation (Montana, United States), report evidence of the presence of a combination of anatomical features unknown in other members of the genus, and interpret the anatomy of the specimen as weakening the case that D. wilsoni and D. torosus are distinct species.[74]
  • Carr (2025) studies the impact of the commercial trade on the sample size of specimens of Tyrannosaurus rex, finds that the rate of discoveries of fossils of T. rex made by commercial companies is higher than that of public trusts, but also reports that commercially collected T. rex fossils mostly remain in private collections or stockrooms, and that there are more fossils of T. rex in private hands than in public trusts.[75]
  • Meso et al. (2025) revise alvarezsaurid fossils from the Salitral Ojo de Agua locality (Allen Formation; Río Negro Province, Argentina) described by Salgado et al. (2009)[76] and an alvarezsaurid femur from the same locality originally described as an ornithopod femur by Coria, Cambiaso & Salgado (2007),[77] describe additional alvarezsaurid material from this locality, and interpret the studied fossils as likely bones of Bonapartenykus ultimus, providing new information on the body plan of members of Patagonykinae.[78]
  • A study on pneumatic structures in the vertebrae of cf. Bonapartenykus ultimus from the Allen Formation is published by Windholz et al. (2025).[79]
  • Evidence indicating that digit loss and reduction of the rest of the forelimb in members of Oviraptorosauria were independent changes resulting from different evolutionary processes is presented by Mead, Funston & Brusatte (2025).[80]
  • Zhu et al. (2025) report the discovery of clutch of elongatoolithid eggs from the Upper Cretaceous Qiupa Formation (China), possibly produced by Yulong mini.[81]
  • Foster, Norell & Balanoff (2025) describe two new specimens of Conchoraptor gracilis from the Baruungoyot Formation (Mongolia), present an updated diagnosis for Conchoraptor and differentiate C. gracilis from both Heyuannia yanshini and Khaan mckennai.[82]
  • New information on the structure and number of hindwing feathers in Microraptor is presented by Chotard et al. (2025), who report the first evidence of asymmetry of long metatarsal covert feathers in Microraptor, and report evidence of a configuration of feather layers in the hindwing of the studied taxon.[83]
  • Garros et al. (2025) study the histology of troodontid metatarsal bones from the Dinosaur Park Formation (Alberta, Canada), reporting evidence of pathologies in the studied fossil sample, and providing evidence of at least two different growth trajectories in the studied troodontids.[84]
  • Yun (2025) studies mandibular strength properties of troodontids, and interprets his findings as indicating that the anterior part of the snout might have been used for handling and grasping food items.[85]

Sauropodomorph research

[edit]
  • Peyre de Fabrègues et al. (2025) describe new fossil material of Leyesaurus marayensis from the Balde de Leyes Formation (Argentina) and revise the anatomy of the holotype specimen of this species, identifying the holotype as a likely juvenile specimen.[86]
  • Toefy, Krupandan & Chinsamy (2025) study the bone histology of two sauropodiform specimens and one early sauropod from the Elliot Formation (South Africa), providing evidence that the three studied specimens underwent rapid growth but differed in the duration of uninterrupted growth, and argue that the change of growth dynamics throughout the evolutionary history of sauropodomorphs was more complex than a simple progression from slow, interrupted growth to fast, uinterrupted growth.[87]
  • Partial skull of an early member of Sauropodiformes, with long, sauropod-like teeth, is described from the Lower Jurassic Lufeng Formation (China) by Sundgren et al. (2025).[88]
  • Description of the anatomy of the appendicular skeleton of Bagualia alba is published by Gomez et al. (2025), who also study morphological diversity of sauropodomorphs throughout their evolutionary history, and report evidence of shifts in morphospace occupation during the Jurassic related to the diversification of early sauropods and extinction of other sauropodomorphs, as well as to subsequent diversification of Neosauropoda.[89]
  • Kaikaew, Suteethorn & Chinsamy (2025) describe a pathologic mamenchisaurid ulna from the Phu Kradung Formation (Thailand), and diagnose the studied specimen as affected by an osteogenic tumor.[90]
  • Saleiro & Tschopp (2025) describe a previously unstudied collection of sauropod teeth from the Upper Jurassic strata in Portugal, identified as belonging to members of Turiasauria, Flagellicaudata, Camarasauridae and Titanosauriformes.[91]
  • A revision of the known material assigned to the genus Haplocanthosaurus is published by Boisvert et al. (2025).[92]
  • A study on the morphology of teeth, their replacement process and possible feeding ecology of Bajadasaurus pronuspinax is published by Garderes (2025).[93]
  • Lerzo & Gallina (2025) redescribe the left ilium of Cathartesaura anaerobica, and interpret its anatomy as consistent with the invasion of the space within the ilium by parts of the abdominal air sac that provided resistance to the thin ilium.[94]
  • Redescription of Liaoningotitan sinensis is published by Shan (2025).[95]
  • Large fusioolithid eggs with thin eggshells, produced by titanosaurs, are described from the Upper Cretaceous Villalba de la Sierra Formation (Spain) by Sanguino et al. (2025), who name a new ootaxon Litosoolithus poyosi.[96]
  • Fossil material of lithostrotian titanosaurs assigned to two morphotypes, including caudal vertebrae preserved with rare pathological features, is described from the Upper Cretaceous Cambambe Basin (Brazil) by Lacerda et al. (2025).[97]
  • A study on the histology of the caudal vertebrae of Rocasaurus muniozi is published by Fernández, Windholz & Zurriaguz (2025), who find fibres that might be histological correlates for skeletal pneumaticity to be present but uncommon in the studied bones.[98]
  • A study on the anatomy of the atlas and axis of Neuquensaurus australis is published by Zurriaguz et al. (2025).[99]

Ornithischian research

[edit]
  • Romilio et al. (2025) describe new ornithischian footprints from the Lower Jurassic Precipice Sandstone (Queensland, Australia), and reaffirm the prevalence of ornithischian footprints across the Early Jurassic dinosaur tracksites from Australia.[100]
  • Barrett & Maidment (2025) revise the type material of Nanosaurus agilis, N. rex, Laosaurus celer, L. gracilis, L. consors and Drinker nisti, interpret these taxa as nomina dubia, and report the presence of dental and skull features in the fossil material of Drinker which were also present in pachycephalosaurs.[101]

Thyreophoran research

[edit]

Cerapod research

[edit]

Birds

[edit]

New bird taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Apus boanoi[118]

Sp. nov

Pavia et al.

Pliocene

Langebaanweg

 South Africa

A swift, a species of Apus

Australarus[119]

Gen. et sp. nov

De Pietri et al.

Miocene

Bannockburn Formation

 New Zealand

A member of the family Laridae. The type species is A. bakeri.

Baminornis[120]

Gen. et sp. nov

Valid

Chen et al.

Late Jurassic (Tithonian)

Nanyuan Formation

 China

An early avialan bearing a pygostyle. The type species is B. zhenghensis.

Gracanicanetta[121]

Gen. et sp. nov

Valid

Bocheński et al.

Miocene (Langhian)

 Bosnia and Herzegovina

A duck. The type species is G. happi.

Hunucornis[122]

Gen. et sp. nov

Agnolín et al.

Miocene

Las Flores Formation

 Argentina

A grebe. Genus includes new species H. huayanen.

Miolarus[119]

Gen. et sp. nov

De Pietri et al.

Miocene

Bannockburn Formation

 New Zealand

A member of the family Laridae. The type species is M. rectirostrum.

Novavis[123]

Gen. et sp. nov

In press

O'Connor et al.

Early Cretaceous

Xiagou Formation

 China

A enantiornithean. The type species is N. pubisculata.

Palaelodus haroldocontii[122]

Sp. nov

Agnolín et al.

Miocene

Las Flores Formation

 Argentina

?Pseudocrypturus danielsi[124]

Sp. nov

Valid

Mayr & Kitchener

Eocene (Ypresian)

London Clay

 United Kingdom

A member of the family Lithornithidae; a species of Pseudocrypturus.

?Pseudocrypturus gracilipes[124]

Sp. nov

Valid

Mayr & Kitchener

Eocene (Ypresian)

London Clay

 United Kingdom

A member of the family Lithornithidae; a species of Pseudocrypturus.

Shuilingornis[125]

Gen. et sp. nov

Valid

Wang et al.

Early Cretaceous

Jiufotang Formation

 China

A euornithean in the family Gansuidae. The type species is S. angelai. Announced in 2024; the final article version was published in 2025.

Zqueheanas[122]

Gen. et sp. nov

Agnolín et al.

Miocene

Las Flores Formation

 Argentina

A duck belonging to the subfamily Tadorninae. Genus includes new species Z. hebe.

Avian research

[edit]
  • Review of the Mesozoic fossil record of avian soft tissue traces is published by O'Connor (2025).[126]
  • A study on the evolution of the ability of birds to move parts of the skull independently is published by Wilken et al. (2025), who link the appearance of this ability to changes of skeletal anatomy and musculature related to the expansion of neurocranium.[127]
  • New specimen of Archaeopteryx, representing the third specimen belonging to this genus found in the Tithonian Mörnsheim Formation (Germany), is described by Foth et al. (2025).[128]
  • A study on the skeletal anatomy and phylogenetic affinities of Iberomesornis romerali is published by Castro-Terol et al. (2025).[129]
  • A study on the bone histology of Avimaia schweitzerae, Novavis pubisculata and Qiliania graffini is published by Atterholt, O'Connor & You (2025).[130]
  • A bird trackway with similarities to tracks produced by herons is described from the Cenomanian Dunvegan Formation (British Columbia, Canada) by Lockley, Plint & Helm (2025).[131]
  • Evidence from the study of moa coprolites, indicating that moa ate and likely spread truffle-like fungi that are endemic to New Zealand, is presented by Boast et al. (2025).[132]
  • Thomas et al. (2025) describe a probable moa trackway from the Pleistocene Karioitahi Group (New Zealand), and name a new ichnotaxon Tapuwaemoa manunutahi.[133]
  • Torres et al. (2025) report the discovery of a new, nearly complete skull of Vegavis iaai, interpret its morphology as supporting phylogenetic affinities of Vegavis with Anseriformes, and report evidence of the presence of a feeding apparatus different from those of extant members of Anseriformes but similar to those of extant birds that capture prey underwater.[134]
  • Zonneveld, Naone & Britt (2025) describe foraging traces produced by waterbirds (possibly by Presbyornis pervetus) from the Eocene Green River Formation (Utah, United States), and name new ichnotaxa Erevnoichnus blochis, E. strimmena, Ravdosichnus guntheri and Aptosichnus diatarachi.[135]
  • A study on the phylogenetic relationships of the dodo and the Rodrigues solitaire is published by Parish (2025).[136]
  • Evidence from the fossil material of great bustards from the Taforalt cave site (Morocco), indicating that great bustards were breeding in the studied area (300 km east of the range of extant great bustards in Morocco) during the Late Pleistocene and that they were exploited by people who occupied the site, is presented by Cooper et al. (2025).[137]
  • The oldest plotopterid skull reported to date is described from the Eocene Lincoln Creek Formation (Washington, United States) by Mayr, Goedert & Richter (2025), who interpret the anatomy of the studied specimen as supporting the affinities of plotopterids with Suloidea.[138]
  • The first Cenozoic ignotornid footprints from South America reported to date, interpreted as most likely produced by an ibis, are described from the Miocene Vinchina Formation (Argentina) by Farina, Krapovickas & Marsicano (2025), who name a new ichnotaxon Gragliavipes gavenskii and review the Cretaceous and Cenozoic avian ichnofamilies.[139]
  • Fossil plumage of a griffon vulture preserved in three dimensions is described from the Pleistocene strata of the Colli Albani volcanic complex (Italy) by Rossi et al. (2025).[140]
  • A study on the bone histology of Brontornis burmeisteri and Patagornis marshi is published by Garcia Marsà et al. (2025).[141]
  • Agnolin, Chafrat & Álvarez-Herrera (2025) describe new fossil material of Patagorhacos terrificus from the Miocene Chichinales Formation (Argentina), interpreted as supporting placement of the species within Phorusrhacidae.[142]
  • Horváth (2025) describes new fossil material of birds from the Miocene and Pliocene sites in Hungary, including 10 taxa new to the Hungarian Neogene avifauna.[143]
  • Marqueta et al. (2025) describe bird assemblages from the Pleistocene levels of the Galls Carboners and Cudó caves (Spain), reporting evidence of presence of the pine grosbeak or a similar bird, which is no longer present in the study area.[144]
  • Syverson & Prothero (2025) study changes of the size or robustness of birds from the La Brea Tar Pits, and find evidence of previously undetected changes in the studied taxa, but report no evidence of a clear relationship between those changes and changes in temperature.[145]
  • Hering et al. (2025) describe subfossil bird burrows from the Tibesti Mountains (Chad), interpreted as possible nesting structures of birds such as bee-eaters, swallows or kingfishers living in the area during the African humid period.[146]

Pterosaurs

[edit]

New pterosaur taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Darwinopterus camposi[147]

Sp. nov

Valid

Cheng et al.

Jurassic

Tiaojishan Formation

 China

Garudapterus[148]

Gen. et sp. nov

Manitkoon et al.

Early Cretaceous

Khorat Group

 Thailand

A member of the family Ctenochasmatidae belonging to the subfamily Gnathosaurinae. The type species is G. buffetauti.

Infernodrakon[149]

Gen. et sp. nov

Thomas et al.

Late Cretaceous (Maastrichtian)

Hell Creek Formation

 United States
( Montana)

A member of the family Azhdarchidae. The type species is I. hastacollis.

Nipponopterus[150]

Gen. et sp. nov

In press

Zhou et al.

Late Cretaceous

Mifune Group

 Japan

A member of the family Azhdarchidae. The type species is N. mifunensis. Announced in 2024; the final article version was published in 2025.

Saratovia[151]

Gen. et sp. nov

Valid

Averianov

Late Cretaceous (Cenomanian)

Melovatka Formation

 Russia
( Saratov Oblast)

A member of Ornithocheirae belonging to the group Targaryendraconia. The type species is S. glickmani.

Pterosaur research

[edit]
  • Evidence of higher laminarity rates of wing bones of pterosaurs compared to their hindlimb bones is presented by Araújo et al. (2025).[152]
  • A study on the presence, volume, and capacity of the cervical musculature of pterosaurs is published by Buchmann & Rodrigues (2025), who interpret the reconstructed musculature as consistent with surface fishing foraging habits of Rhamphorhynchus muensteri and members of the genus Anhanguera, and with capture of small terrestrial prey by Azhdarcho lancicollis.[153]
  • Purported pterosaur tracks reported from the Lower Cretaceous Patuxent Formation (Virginia, United States) by Weems & Bachman (2023)[154] are argued to be more likely results of erosion by McDavid & Thomas (2025).[155]
  • Hone & McDavid (2025) describe the largest known specimen of Rhamphorhynchus muensteri (wingspan 1.8 metres (5.9 ft)) from the Solnhofen Limestone (Germany) and discuss its implications for anatomical transformations through ontogeny in the genus and other rhamphorhynchines.[156]
  • Jagielska et al. (2025) describe the osteology of Dearc sgiathanach and reconstruct its cranial and antebrachial musculature.[157]
  • Smyth et al. (2025) identify three pterosaur tracks morphotypes as produced by trackmakers belonging to the groups Ctenochasmatoidea, Dsungaripteridae and Neoazhdarchia, and interpret the distribution of pterosaur tracks as consistent with a mid-Mesozoic radiation of pterodactyloid pterosaurs into terrestrial niches.[158]
  • Partial pterosaur humerus with similarities to the humerus of Cycnorhamphus suevicus is described from the Upper Jurassic strata in the Volga region (Russia) by Averianov & Lopatin (2025).[159]
  • A ctenochasmatid mandible representing the first finding of a pterodactyloid pterosaur fossil from the Upper Jurassic (Tithonian) Portland Limestone Formation (United Kingdom) is described by Smith & Martill (2025).[160]
  • Bennett (2025) revises Gnathosaurus subulatus and interprets both "Pterodactylus" micronyx and Aurorazhdarcho primordius as junior synonyms of this species.[161]
  • A study on tooth replacement in Forfexopterus is published by Zhou & Fan (2025).[162]
  • Redescription and a study on the affinities of Herbstosaurus pigmaeus is published by Ezcurra et al. (2025).[163]
  • Song et al. (2025) describe a pterosaur humerus from the Lower Cretaceous Lianmuqin Formation (China), interpreted as the first record of a member of Ornithocheiromorpha from the Tugulu Group.[164]

Other archosaurs

[edit]

Other new archosaur taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Gondwanax[165]

Gen. et sp. nov

Valid

Müller

MiddleLate Triassic (Ladinian–early Carnian)

Pinheiros-Chiniquá Sequence of the Santa Maria Supersequence

 Brazil

A sulcimentisaurian member of the possibly paraphyletic family Silesauridae. The type species is G. paraisensis. Announced in 2024; the final article version was published in 2025.

Other archosaur research

[edit]
  • Garcia & Müller (2025) revise the fossil record of probable pterosaur precursors from the Triassic strata of the Candelária Sequence of the Santa Maria Supersequence (Brazil) and study their phylogenetic affinities, recovering lagerpetids as an evolutionary grade ancestral to pterosaurs.[166]

General research

[edit]
  • Evidence from the study of bone pneumaticity in extant birds, indicating that studies of skeletal pneumaticity in extinct archosaurs that don't take soft tissues in the internal bone cavities into account might overestimate the volume fraction of pneumatic bones that was composed of air, is presented by Burton et al. (2025).[167]
  • Xu & Barrett (2025) review the research on the evolutionary history of feathers from the preceding years.[168]
  • Hedge et al. (2025) revise archosaur eggshells from the Mussentuchit Member of the Cedar Mountain Formation (Utah, United States), and identify remains of eggs produced by oviraptorosaur theropods, ornithopods and a crocodylomorph.[169]
  • Brown et al. (2025) describe a cervical vertebra of a juvenile specimen of Cryodrakon boreas from the Dinosaur Park Formation (Alberta, Canada), preserved with a bite mark interpreted as likely produced by a crocodilian.[170]

References

[edit]
  1. ^ Haldar, A.; Ray, S.; Bandyopadhyay, S. (2025). "A new paratypothoracin aetosaur (Archosauria: Pseudosuchia) from the Upper Triassic Dharmaram Formation of India and its biostratigraphic implications". Journal of Vertebrate Paleontology. 44 (3). e2439533. doi:10.1080/02724634.2024.2439533.
  2. ^ Wu, X.-C.; Witmer, L. M.; Chatterjee, S.; Cunningham, D. (2025). "A new crocodylomorph (Pseudosuchia, Crocodylomorpha) from the Upper Triassic of Texas and its phylogenetic relationships". Journal of Vertebrate Paleontology. e2446604. doi:10.1080/02724634.2024.2446604.
  3. ^ Bravo, Gonzalo Gabriel; Pol, Diego; Leardi, Juan Martín; Krause, Javier Marcelo; Nicholl, Cecily S. C.; Rougier, Guillermo; Mannion, Philip D. (2025-03-26). "A new notosuchian crocodyliform from the Early Palaeocene of Patagonia and the survival of a large-bodied terrestrial lineage across the K–Pg mass extinction". Proceedings of the Royal Society B: Biological Sciences. 292 (2043): 20241980. doi:10.1098/rspb.2024.1980. PMC 11936684. PMID 40132624.
  4. ^ Carvalho, J. C.; Santos, D. M.; Pinto, R. L.; Santucci, R. M. (2025). "Anatomical description and systematics of a new notosuchian (Mesoeucrocodylia; Crocodyliformes) from the Quiricó Formation, Lower Cretaceous, Sanfranciscana Basin, Brazil". Journal of Vertebrate Paleontology. e2452947. doi:10.1080/02724634.2025.2452947.
  5. ^ Fitch, A. J.; Kammerer, C. F.; Nesbitt, S. J. (2025). "First occurrences of Poposauroidea (Archosauria: Paracrocodylomorpha) from North Carolina expand their geographic range in the Late Triassic". Palaeodiversity. 18 (1): 1–9. doi:10.18476/pale.v18.a1.
  6. ^ McDavid, Skye Noin (2025-03-15). "Huenesuchus is an objective synonym of Prestosuchus while 'class-group names' do not exist in and are not regulated by the ICZN: a response to Kischlat". Revista Brasileira de Paleontologia. 27 (4): e20240425. doi:10.4072/rbp.2024.4.0425.
  7. ^ Błaszczeć, P.; Antczak, M. (2025). "The histology and function of the dermal armour of the aetosaur Stagonolepis olenkae Sulej, 2010 (Archosauria, Pseudosuchia) from Krasiejów (SW Poland)". Acta Geologica Polonica. 75 (1). e38. doi:10.24425/agp.2024.152660.
  8. ^ Haldar, A.; Ray, S. (2025). "First report of desmatosuchine aetosaur (Pseudosuchia, Aetosauriformes) osteoderms from the Upper Triassic Tiki Formation of India: Their complex internal vascular system, functional significance and biostratigraphy". Journal of Anatomy. doi:10.1111/joa.14255. PMID 40205778.
  9. ^ Melstrom, K. M.; Angielczyk, K. D.; Ritterbush, K. A.; Irmis, R. B. (2025). "For a while, crocodile: crocodylomorph resilience to mass extinctions". Palaeontology. 68 (2). e70005. doi:10.1111/pala.70005.
  10. ^ Ponce, D. A.; Cerda, I. A.; Desojo, J. B. (2025). "A fast start: Evidence of rapid growth in Trialestes romeri, an early Crocodylomorpha from the Upper Triassic continental beds of Argentina based on osteohistological analyses". Journal of Anatomy. doi:10.1111/joa.14230. PMID 39887998.
  11. ^ Forêt, T.; Aubier, P.; Jouve, S.; Cubo, J. (2025). "Analysing Thalattosuchia palaeobiodiversity through the prism of phylogenetic comparative methods". Palaeontology. 68 (1). e70000. doi:10.1111/pala.70000.
  12. ^ Johnson, M. M.; Sachs, S.; Young, M. T.; Abel, P. (2025). "A re-description of the teleosauroid Macrospondylus bollensis (Jaeger, 1828) from the Posidonienschiefer Formation of Germany". PalZ. doi:10.1007/s12542-024-00712-x.
  13. ^ Sena, M. V. A.; Montefeltro, F. C.; Marinho, T. S.; Langer, M. C.; Fachini, T. S.; Pinheiro, A. E. P.; Machado, A. S.; Lopes, R. T.; Pellarin, R.; Sayao, J. M.; Oliveira, G. R.; Cubo, J. (2025). "Revisiting the aerobic capacity of Notosuchia (Crocodyliformes, Mesoeucrocodylia)". Lethaia. 57 (4): 1–8. doi:10.18261/let.57.4.6.
  14. ^ Navarro, T. G.; Cerda, I. A.; Filippi, L. S.; Pol, D. (2025). "Life history and growth dynamics of a peirosaurid crocodylomorph (Mesoeucrocodylia; Notosuchia) from the Late Cretaceous of Argentina inferred from its bone histology". Journal of Anatomy. doi:10.1111/joa.14182. PMID 39846495.
  15. ^ Viñola López, L. W.; Velez-Juarbe, J.; Münch, P.; Almonte Milan, J. N.; Antoine, P.-O.; Marivaux, L.; Jimenez-Vasquez, O.; Bloch, J. (2025). "A South American sebecid from the Miocene of Hispaniola documents the presence of apex predators in early West Indies ecosystems". Proceedings of the Royal Society B: Biological Sciences. 292 (2045). 20242891. doi:10.1098/rspb.2024.2891. PMC 12040450. PMID 40300627.
  16. ^ Kuzmin, I. T.; Sichinava, E. A.; Mazur, E. V.; Gombolevskiy, V. A.; Sennikov, A. G.; Skutschas, P. P. (2025). "Neurocranial anatomy of Paralligator (Neosuchia: Paralligatoridae) from the Upper Cretaceous of Mongolia". Zoological Journal of the Linnean Society. 203 (1). zlae177. doi:10.1093/zoolinnean/zlae177.
  17. ^ Lessner, E. J.; Petermann, H.; Lyson, T. R. (2025). "First record of Borealosuchus sternbergii from the lower Paleocene Denver Formation (lower Danian), Colorado (Denver Basin)". Journal of Vertebrate Paleontology. 44 (3). e2434214. doi:10.1080/02724634.2024.2434214.
  18. ^ Walter, J. D.; Massonne, T.; Paiva, A. L. S.; Martin, J. E.; Delfino, M.; Rabi, M. (2025). "Expanded phylogeny elucidates Deinosuchus relationships, crocodylian osmoregulation and body-size evolution". Communications Biology. 8. 611. doi:10.1038/s42003-025-07653-4. PMC 12018936. PMID 40269118.
  19. ^ Hoffman, D. K.; Goldsmith, E. R.; Houssaye, A.; Maidment, S. C. R.; Felice, R. N.; Mannion, P. D. (2025). "Evolution of growth strategy in alligators and caimans informed by osteohistology of the late Eocene early-diverging alligatoroid crocodylian Diplocynodon hantoniensis". Journal of Anatomy. doi:10.1111/joa.14231. PMID 39924872.
  20. ^ Serrano-Martínez, A.; Luján, À. H.; García-Pérez, Á.; Fortuny, J. (2025). "New data on the inner skull cavities of Diplocynodon tormis (Crocodylia, Diplocynodontinae) from the Duero Basin (Iberian Peninsula, Spain)". Fossil Record. 28 (1): 67–77. doi:10.3897/fr.28.133743.
  21. ^ Pligersdorffer, C. C.; Burke, P. M. J.; Mannion, P. D. (2025). "Evaluation of the endocranial anatomy of the early Paleogene north African gavialoid crocodylian Argochampsa krebsi and evolutionary implications for adaptation to salinity tolerance in marine crocodyliforms". Journal of Anatomy. doi:10.1111/joa.14213. PMID 39814549.
  22. ^ El-Degwi, E. S.; AbdelGawad, M.; Radwaan, S. E.; Sliem, R. E.; Sileem, A.; Abd Elhady, S. I. (2025). "Evolutionary trend of the broad-snouted crocodile from the Eocene, Early Miocene and recent ones from Egypt". Scientific Reports. 15 (1). 9159. doi:10.1038/s41598-025-91167-w. PMC 11914565. PMID 40097488.
  23. ^ Lovelace, David M; Kufner, Aaron M; Fitch, Adam J; Curry Rogers, Kristina; Schmitz, Mark; Schwartz, Darin M; LeClair-Diaz, Amanda; St.Clair, Lynette; Mann, Joshua; Teran, Reba (2025-01-01). "Rethinking dinosaur origins: oldest known equatorial dinosaur-bearing assemblage (mid-late Carnian Popo Agie FM, Wyoming, USA)". Zoological Journal of the Linnean Society. 203 (1): zlae153. doi:10.1093/zoolinnean/zlae153. ISSN 0024-4082.
  24. ^ Xi, Yao; Zhao, Qi; Ren, Tingcong; Wei, Guangbiao; Xu, Xing (2025-01-17). "New evidence for the earliest ornithischian dinosaurs from Asia". iScience. 28 (1). doi:10.1016/j.isci.2024.111641. PMC 11761276. PMID 39868031.
  25. ^ Agnolín, Federico L.; Motta, Matías J.; Garcia Marsà, Jordi; Aranciaga-Rolando, Mauro A.; Álvarez-Herrera, Gerardo; Chimento, Nicolás R.; Rozadilla, Sebastian; Brissón-Egli, Federico; Cerroni, Mauricio A.; Panzeri, Karen M.; Bogan, Sergio; Casadio, Silvio; Sterli, Juliana; Miquel, Sergio E.; Martínez, Sergio; Pérez, Leandro M.; Pol, Diego; Novas, Fernando E. (2025). "New fossiliferous locality from the Anacleto Formation (Late Cretaceous, Campanian) from northern Patagonia, with the description of a new titanosaur". Revista del Museo Argentino de Ciencias Naturales. 26 (2): 217–259. doi:10.22179/REVMACN.26.885. ISSN 1853-0400.
  26. ^ Simón, M. E.; Salgado, L. (2025). "New rebbachisaurid (Dinosauria, Sauropoda) from the Huincul Formation (upper Cenomanian-Turonian) of Villa El Chocón (Neuquén Province, Argentina)". Cretaceous Research. 106137. doi:10.1016/j.cretres.2025.106137.
  27. ^ Kobayashi, Yoshitsugu; Zelenitsky, Darla K.; Fiorillo, Anthony R.; Chinzorig, Tsogtbaatar (2025-03-25). "Didactyl therizinosaur with a preserved keratinous claw from the Late Cretaceous of Mongolia". iScience. 28 (4). 112141. doi:10.1016/j.isci.2025.112141. ISSN 2589-0042.
  28. ^ Averianov, A. O.; Sues, H.-D. (2025). "A new ornithomimid theropod from the Upper Cretaceous Bissekty Formation of Uzbekistan". Journal of Vertebrate Paleontology. 44 (3). e2433759. doi:10.1080/02724634.2024.2433759.
  29. ^ Coria, R. A.; Cerda, A. A.; Escaso, F.; Baiano, M. A.; Bellardini, F.; Braun, A.; Coria, L. M.; Gutierrez, J. M.; Pino, D.; Windholz, G. J.; Currie, P. J.; Ortega, F. (2025). "First Valanginian (Early Cretaceous) ornithopod (Dinosauria, Ornithischia) from Patagonia". Cretaceous Research. 166. 106027. doi:10.1016/j.cretres.2024.106027.
  30. ^ a b Qiu, Rui; Wang, Xiaolin; Jiang, Shunxing; Meng, Jin; Zhou, Zhonghe (2025-02-22). "Two new compsognathid-like theropods show diversified predation strategies in theropod dinosaurs". National Science Review. doi:10.1093/nsr/nwaf068. ISSN 2095-5138. PMC 11970238.
  31. ^ Serrano-Brañas, Claudia Inés; Espinosa-Chávez, Belinda; de León-Dávila, Claudio; Maccracken, S. Augusta; Barrera-Guevara, Daniela; Torres-Rodríguez, Esperanza; Prieto-Márquez, Albert (2025-01-28). "A long-handed new ornithomimid dinosaur from the Campanian (Upper Cretaceous) Cerro del Pueblo Formation, Coahuila, Mexico". Cretaceous Research. 169: 106087. doi:10.1016/j.cretres.2025.106087. ISSN 0195-6671.
  32. ^ Czepiński, Ł.; Madzia, D. (2025). "Exploring the diversity and disparity of rhabdodontomorph ornithopods from the Late Cretaceous European archipelago". Scientific Reports. 15. 15209. doi:10.1038/s41598-025-98083-z.
  33. ^ a b Díez Díaz, Verónica; Mannion, Philip D.; Csiki-Sava, Zoltán; Upchurch, Paul (20 February 2025). "Revision of Romanian sauropod dinosaurs reveals high titanosaur diversity and body-size disparity on the latest Cretaceous Haţeg Island, with implications for titanosaurian biogeography". Journal of Systematic Palaeontology. 23 (1). doi:10.1080/14772019.2024.2441516.
  34. ^ Dai, Hui; Ma, Qingyu; Xiong, Can; Lin, Yu; Zeng, Hui; Tan, Chao; Wang, Jun; Zhang, Yuguang; Xing, Hai (February 2025). "A new late-diverging non-hadrosaurid hadrosauroid (Dinosauria: Ornithopoda) from southwest China: support for interchange of dinosaur faunas across East Asia during the Late Cretaceous". Cretaceous Research. 166: 105995. doi:10.1016/j.cretres.2024.105995. ISSN 0195-6671.
  35. ^ Kellermann, Maximilian; Cuesta, Elena; Rauhut, Oliver W. M. (2025-01-14). "Re-evaluation of the Bahariya Formation carcharodontosaurid (Dinosauria: Theropoda) and its implications for allosauroid phylogeny". PLOS ONE. 20 (1): e0311096. doi:10.1371/journal.pone.0311096. ISSN 1932-6203. PMC 11731741. PMID 39808629.
  36. ^ Chen, X.-Y.; Wang, Y.-M.; Zhang, Q.-N.; Wang, T.; You, H.-L. (2025). "A new species of Xingxiulong (Dinosauria, Sauropodomorpha) from the lower Jurassic Lufeng formation of Yunnan Province, China". Historical Biology: An International Journal of Paleobiology: 1–10. doi:10.1080/08912963.2025.2458130.
  37. ^ Zou, Yi; Chen, Li; Wang, Tao; Wang, Guo-Fu; Zhang, Wei-Gang; Zhang, Xiao-Qin; Wang, Zhen-Ji; Wu, Xiao-Chun; You, Hai-Lu (2025-04-02). "A new metriacanthosaurid theropod dinosaur from the Middle Jurassic of Yunnan Province, China". PeerJ. 13: e19218. doi:10.7717/peerj.19218. ISSN 2167-8359. PMC 11971988.
  38. ^ Hao, M.; Li, Z.; Wang, Z.; Wang, S.; Ma, F.; Qinggele; King, J. L.; Pei, R.; Zhao, Q.; Xu, X. (March 2025). "A new oviraptorosaur from the Lower Cretaceous Miaogou Formation of western Inner Mongolia, China". Cretaceous Research. 167. 106023. doi:10.1016/j.cretres.2024.106023.
  39. ^ Maidment, S.; Butler, R. J. (2025). "New frontiers in dinosaur exploration". Biology Letters. 21 (4). 20250045. doi:10.1098/rsbl.2025.0045. PMID 40304201.
  40. ^ Heath, J. A.; Cooper, N.; Upchurch, P.; Mannion, P. D. (2025). "Accounting for sampling heterogeneity suggests a low paleolatitude origin for dinosaurs". Current Biology. 35 (5): 941–953.e5. doi:10.1016/j.cub.2024.12.053. PMID 39855204.
  41. ^ Falkingham, P. L. (2025). "Reconstructing dinosaur locomotion". Biology Letters. 21 (1). 20240441. doi:10.1098/rsbl.2024.0441. PMC 11732409. PMID 39809325.
  42. ^ Chapelle, K. E. J.; Griffin, C. T.; Pol, D. (2025). "Growing with dinosaurs: a review of dinosaur reproduction and ontogeny". Biology Letters. 21 (1). 20240474. doi:10.1098/rsbl.2024.0474. PMC 11732415. PMID 39809324.
  43. ^ Schweitzer, M. H.; Zheng, W.; Dickinson, E.; Scannella, J.; Hartstone-Rose, A.; Sjövall, P.; Lindgren, J. (2025). "Taphonomic variation in vascular remains from Mesozoic non-avian dinosaurs". Scientific Reports. 15 (1). 4359. doi:10.1038/s41598-025-85497-y. PMC 11799182. PMID 39910217.
  44. ^ Sharpe, H. S.; Wang, Y.; Dudgeon, T. W.; Powers, M. J.; Whitebone, S. A.; Coppock, C. C.; Dyer, A. D.; Sullivan, C. (2025). "Skull morphology and histology indicate the presence of an unexpected buccal soft tissue structure in dinosaurs". Journal of Anatomy. doi:10.1111/joa.14242. PMID 40114639.
  45. ^ Galton, P. M.; Regalado Fernández, O. R.; Farlow, J. O. (2025). "Bones of dinosaurs and other reptiles from the Triassic-Jurassic of the Connecticut Valley: Over 200 years of published history". Revue de Paléobiologie, Genève. 44 (2): 1–45.
  46. ^ Milàn, J.; Vallon, L. H. (2025). "Leave tracks, not bones – a diverse Middle Jurassic dinosaur fauna from Denmark, revealed only by tracks". Italian Journal of Geosciences. doi:10.3301/IJG.2025.07.
  47. ^ Deiques, D.; Barcelos-Silveira, A.; Dentzien-Dias, P.; Francischini, H. (2025). "Dinosaur tracks from the Guará Formation (Brazil) shed light on the biodiversity of a South American Late Jurassic humid desert". Journal of South American Earth Sciences. 153. 105364. doi:10.1016/j.jsames.2025.105364.
  48. ^ Yu, K.; Wu, W.; Sun, W.; Chen, J.; Wang, X. (2025). "New Dinosaur Teeth from the Upper Cretaceous Nenjiang Formation in Songliao Basin, Northeast China". Acta Geologica Sinica (English Edition). 99 (2): 320–331. doi:10.1111/1755-6724.15288.
  49. ^ Vázquez López, B. J.; Sellés, A.; Prieto-Márquez, A.; Vila, B. (2025). "Habitat preference of the dinosaurs from the Ibero-Armorican domain (Upper Cretaceous, south-western Europe)". Swiss Journal of Palaeontology. 144. 4. doi:10.1186/s13358-024-00346-1.
  50. ^ Dean, C. D.; Chiarenza, A. A.; Doser, J. W.; Farnsworth, A.; Jones, L. A.; Lyster, S. J.; Outhwaite, C. L.; Valdes, P. J.; Butler, R. J.; Mannion, P. D. (2025). "The structure of the end-Cretaceous dinosaur fossil record in North America". Current Biology. doi:10.1016/j.cub.2025.03.025.
  51. ^ Garcia, M. S.; Martínez, R. N.; Müller, R. T. (2025). "Craniofacial lesions in the earliest predatory dinosaurs indicate intraspecific agonistic behaviour at the dawn of the dinosaur era". The Science of Nature. 112 (2). 30. doi:10.1007/s00114-025-01978-0. PMID 40138005.
  52. ^ Rozario, A. P.; Dasgupta, S. (2025). "Preliminary description of the first saurischian tracksite from the Lower Jurassic Kota Formation, Pranhita-Godavari Basin, Southern India". Historical Biology: An International Journal of Paleobiology: 1–12. doi:10.1080/08912963.2025.2482185.
  53. ^ Blakesley, T.; dePolo, P. E.; Wade, T. J.; Ross, D. A.; Brusatte, S. L. (2025). "A new Middle Jurassic lagoon margin assemblage of theropod and sauropod dinosaur trackways from the Isle of Skye, Scotland". PLOS ONE. 20 (4). e0319862. doi:10.1371/journal.pone.0319862. PMC 11964282.
  54. ^ Adams, T. L.; Price, D.; Godet, A.; Neuman, J.; Davis, C.; Lehrmann, A. A.; Lehrmann, D. J. (2025). "Revisiting Bird's swimming sauropod: new insights on Manus-dominated Dinosaur Tracks from the Mayan Dude Ranch in Bandera, Texas". Historical Biology: An International Journal of Paleobiology: 1–15. doi:10.1080/08912963.2025.2461068.
  55. ^ Yin, Y.-L.; Li, Y.; Hu, J.; Zhang, H.-G. (2025). "Dinosaur teeth from the Lower Cretaceous Jiufotang Formation of western Liaoning, China". PeerJ. 13. e19013. doi:10.7717/peerj.19013. PMC 11847484. PMID 39989734.
  56. ^ Garland, K. L. S.; Hay, E. M.; Field, D. J.; Evans, A. R. (2025). "Common Developmental Origins of Beak Shapes and Evolution in Theropods". iScience. 112246. doi:10.1016/j.isci.2025.112246.
  57. ^ Marques, C. S.; Dufourq, E.; Pereira, S.; Santos, V. F.; Malafaia, E. (2025). "Enhancing the classification of isolated theropod teeth using machine learning: a comparative study". PeerJ. 13. e19116. doi:10.7717/peerj.19116. PMC 11954464. PMID 40161333.
  58. ^ Piñuela, L.; García-Ramos, J. C.; Moreno, K.; Leonardi, G.; Finsterbusch-Lagos, O. E. (2025). "Exceptional and striking 3D track-detached undertrack specimens from the Upper Jurassic of Asturias (N Spain)". Rivista Italiana di Paleontologia e Stratigrafia. 131 (1): 11–24. doi:10.54103/2039-4942/23711.
  59. ^ McLarty, J. A.; McKenzie, Z.; Hayes, W. K.; Clawson, R.; Baltazar, H. D.; Alves, E. F.; Nick, K. E.; Esperante, R. (2025). "Let that sink in: track depth as a driving factor in the formation of dinosaur tail traces". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2025.2481520.
  60. ^ Averianov, A. O. (2025). "A digging theropod? Enigmatic ankylosed phalanges from the Upper Cretaceous of Uzbekistan". PalZ. doi:10.1007/s12542-025-00724-1.
  61. ^ Sombathy, R.; O'Connor, P. M.; D'Emic, M. D. (2025). "Osteohistology of the unusually fast-growing theropod dinosaur Ceratosaurus". Journal of Anatomy. doi:10.1111/joa.14186. PMID 39909856.
  62. ^ Seculi Pereyra, E. E.; Pérez, D. E.; Méndez, A. H. (2025). "Macroevolutionary trends in Ceratosauria body size: insights of phylogenetic comparative methods". BMC Ecology and Evolution. 25 (1). 32. doi:10.1186/s12862-025-02374-y. PMC 11994025. PMID 40221646.
  63. ^ Seculi Pereyra, E. E.; Vrdoljak, J.; Ezcurra, M. D.; González-Dionis, J.; Paschetta, C.; Méndez, A. H. (2025). "Morphology of the maxilla informs about the type of predation strategy in the evolution of Abelisauridae (Dinosauria: Theropoda)". Scientific Reports. 15 (1). 7857. doi:10.1038/s41598-025-87289-w. PMC 11885552. PMID 40050618.
  64. ^ Pradelli, L. A.; Pol, D.; Ezcurra, M. D. (2025). "The appendicular osteology of the Early Jurassic theropod Piatnitzkysaurus floresi and its implications on the morphological disparity of non-coelurosaurian tetanurans". Zoological Journal of the Linnean Society. 203 (1). zlae176. doi:10.1093/zoolinnean/zlae176.
  65. ^ Chowchuvech, W.; Manitkoon, S.; Chanthasit, P.; Chokchaloemwong, D.; Kosulawatha, W.; Ketwetsuriya, C. (2025). "Isolated theropod teeth from the Upper Jurassic to Lower Cretaceous Khorat Group: Implications for theropod diversity in Thailand". Cretaceous Research. 106147. doi:10.1016/j.cretres.2025.106147.
  66. ^ Isasmendi, E.; Chesta, E.; Páramo, A.; Pereda-Suberbiola, X. (2025). "A giant spinosaurid from the Iberian Peninsula and new data on the Early Cretaceous Iberian non-avian theropod palaeodiversity". Cretaceous Research. 106134. doi:10.1016/j.cretres.2025.106134.
  67. ^ Liu, Z.; Prendergast, A. L.; Drysdale, R.; Long, K.; May, J.-H. (2025). "The effectiveness of oxygen isotopes in Spinosaurus tooth dentine for high-resolution palaeoenvironmental reconstructions". Palaeogeography, Palaeoclimatology, Palaeoecology. 668. 112908. doi:10.1016/j.palaeo.2025.112908.
  68. ^ Kotevski, J.; Duncan, R. J.; Ziegler, T.; Bevitt, J. J.; Vickers-Rich, P.; Rich, T. H.; Evans, A. R.; Poropat, S. F. (2025). "Evolutionary and paleobiogeographic implications of new carcharodontosaurian, megaraptorid, and unenlagiine theropod remains from the upper Lower Cretaceous of Victoria, southeast Australia". Journal of Vertebrate Paleontology. e2441903. doi:10.1080/02724634.2024.2441903.
  69. ^ Averianov, A. O.; Kuzmin, I. T.; Skutschas, P. P.; Sues, H.-D. (2025). "First record of Carcharodontosauridae (Dinosauria, Theropoda) in the Upper Cretaceous Khodzhakul Formation of Uzbekistan". Journal of Paleontology: 1–13. doi:10.1017/jpa.2025.1.
  70. ^ Calvo, J. O.; Porfiri, J. D.; Aranciaga Rolando, A. M.; Novas, F. E.; Dos Santos, D. D.; Wessel, D. E.; Lamanna, M. C. (2025). "Morphological and Phylogenetic Significance of the First Adult Humerus of the Patagonian Cretaceous Theropod Megaraptor namunhuaiquii Novas, 1998". Annals of Carnegie Museum. 90 (3): 161–181. doi:10.2992/007.090.0301.
  71. ^ Kubo, K.; Kobayashi, Y. (2025). "Cursorial ecomorphology and temporal patterns in theropod dinosaur evolution during the mid-Cretaceous". Royal Society Open Science. 12 (1). 241178. doi:10.1098/rsos.241178. PMC 11732414. PMID 39816741.
  72. ^ Voris, J. T.; Therrien, F.; Ridgely, R. C.; Witmer, L. M.; Zelenitsky, D. K. (2025). "Ontogenetic Changes in Endocranial Anatomy in Gorgosaurus libratus (Theropoda: Tyrannosauridae) Provide Insight Into the Evolution of the Tyrannosauroid Endocranium". Journal of Comparative Neurology. 533 (5). e70056. doi:10.1002/cne.70056. PMC 12036647. PMID 40293427.
  73. ^ Scherer, C. R. (2025). "Multiple lines of evidence support anagenesis in Daspletosaurus and cladogenesis in derived tyrannosaurines". Cretaceous Research. 169. 106080. doi:10.1016/j.cretres.2025.106080.
  74. ^ Warner-Cowgill, E.; Storrs, G. W.; Rogers, R. R.; Maltese, A. E. (2025). "Cranial anatomy and stratigraphy of a new specimen of the tyrannosaurine dinosaur Daspletosaurus from the Judith River Formation of Central Montana, USA". Acta Palaeontologica Polonica. 70 (1): 159–174. doi:10.4202/app.01143.2024.
  75. ^ Carr, T. D. (2025). "Tyrannosaurus rex: An endangered species". Palaeontologia Electronica. 28 (1). 28.1.a16. doi:10.26879/1337.
  76. ^ Salgado, L.; Coria, R. A.; Arcucci, A. B.; Chiappe, L. M. (2009). "Remains of Alvarezsauridae (Theropoda, Coelurosauria) in the Alien Formation (Campanian-Maastrichthian), in Salitral Ojo de Agua, Río Negro Province, Argentina". Andean Geology. 36 (1): 67–80. doi:10.4067/S0718-71062009000100006.
  77. ^ Coria, R. A.; Cambiaso, A. V.; Salgado, L. (2007). "New records of basal ornithopod dinosaurs in the Cretaceous of North Patagonia". Ameghiniana. 44 (2): 473–477.
  78. ^ Meso, J. G.; Choiniere, J. N.; Baiano, M. A.; Brusatte, S. L.; Canale, J. I.; Salgado, L.; Pol, D.; Pittman, M. (2025). "New information on Bonapartenykus (Alvarezsauridae: Theropoda) from the Allen Formation (middle Campanian-lower Maastrichtian) of Río Negro Province, Patagonia, Argentina clarifies the Patagonykinae body plan". PLOS ONE. 20 (1). e0308366. doi:10.1371/journal.pone.0308366. PMC 11781669. PMID 39883665.
  79. ^ Windholz, G. J.; Meso, J. G.; Wedel, M. J.; Pittman, M. (2025). "First unambiguous record of pneumaticity in the axial skeleton of alvarezsaurians (Theropoda: Coelurosauria)". PLOS ONE. 20 (4). e0320121. doi:10.1371/journal.pone.0320121. PMC 11964243.
  80. ^ Mead, A.; Funston, G.; Brusatte, S. (2025). "Forelimb reduction and digit loss were evolutionarily decoupled in oviraptorosaurian theropod dinosaurs". Royal Society Open Science. 12 (3). 242114. doi:10.1098/rsos.242114. PMC 11937923.
  81. ^ Zhu, X.-F.; Chang, F.; Li, Y.; Zhang, X.-H.; Gao, D.-S.; Wang, Q.; Qiu, R.; Wang, X.-L.; Liu, D.; Jia, S-H.; Jia, G.-H.; Zhang, J.-H.; Xu, L. (2025). "The first discovery of non-avian dinosaur egg clutch (Macroolithus yaotunensis, Elongatoolithidae) from the Upper Cretaceous Qiupa Formation of Tantou Basin". Vertebrata PalAsiatica. 63 (2): 159–172. doi:10.19615/j.cnki.2096-9899.250212.
  82. ^ Foster, W.; Norell, M. A.; Balanoff, A. M. (2025). "Two new specimens of Conchoraptor gracilis (Theropoda, Oviraptorosauria) from the Late Cretaceous of Mongolia". American Museum Novitates (4033): 1–66. hdl:2246/7397.
  83. ^ Chotard, M.; Wang, X.; Zheng, X.; Kaye, T. G.; Grosmougin, M.; Barlow, L.; Kundrát, M.; Dececchi, T. A.; Habib, M. B.; Zariwala, J.; Hartman, S.; Xu, X.; Pittman, M. (2025). "New information on the hind limb feathering, soft tissues and skeleton of Microraptor (Theropoda: Dromaeosauridae)". BMC Ecology and Evolution. 25 (1). 37. doi:10.1186/s12862-025-02372-0.
  84. ^ Garros, C. W.; Powers, M. J.; Dyer, A. D.; Currie, P. J. (2025). "Osteohistological analysis of metatarsals reveals new information on pathology and life history of troodontids from the Campanian Dinosaur Park Formation, Alberta, Canada". Journal of Anatomy. doi:10.1111/joa.14262.
  85. ^ Yun, C.-G. (2025). "Jaw biomechanics of Troodontidae and their implications for the palaeobiology of this lineage of bird-like theropod dinosaurs". Lethaia. 58 (1): 1–12. doi:10.18261/let.58.1.3.
  86. ^ Peyre de Fabrègues, C.; Apaldetti, C.; Cerda, I. A.; Abelín, D.; Martínez, R. N. (2025). "Leyesaurus marayensis (Dinosauria, Sauropodomorpha) from northwestern Argentina: an update". Ameghiniana. doi:10.5710/AMGH.11.12.2024.3622.
  87. ^ Toefy, F.; Krupandan, E.; Chinsamy, A. (2025). "Palaeobiology and osteohistology of South African sauropodomorph dinosaurs". Journal of Anatomy. doi:10.1111/joa.14229. PMID 39960138.
  88. ^ Sundgren, J.; Chatterjee, S.; Zhang, Q.-N.; You, H.-L. (2025). "A description of new sauropodomorph cranial material from the Lower Jurassic Lufeng Formation of Yunnan Province, P. R. China". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2025.2481510.
  89. ^ Gomez, K. L.; Pol, D.; Ezcurra, M. D.; Carballido, J. L. (2025). "Osteology of the appendicular skeleton of Bagualia alba (Dinosauria, Eusauropoda) from the Lower Jurassic of Patagonia and the macroevolutionary history of early eusauropods". Cladistics. 41 (1): 70–103. doi:10.1111/cla.12607. PMID 39887763.
  90. ^ Kaikaew, S.; Suteethorn, S.; Chinsamy, A. (2025). "Novel report of an osteogenic tumor in a Late Jurassic mamenchisaurid from Thailand". Journal of Anatomy. doi:10.1111/joa.14266.
  91. ^ Saleiro, A.; Tschopp, E. (2025). "New sauropod teeth from the Upper Jurassic of Portugal and their implications for sauropod dental evolution". Papers in Palaeontology. 11 (1). e70001. doi:10.1002/spp2.70001.
  92. ^ Boisvert, Colin; Bivens, Gunnar; Curtice, Brian; Wilhite, Ray; Wedel, Mathew (2025). "Census of currently known specimens of the Late Jurassic sauropod Haplocanthosaurus from the Morrison Formation, USA". Geology of the Intermountain West. 12: 1–23. doi:10.31711/giw.v12.pp1-23.
  93. ^ Garderes, J. P. (2025). "Morphology, development and ecological implications of the dentition of Bajadasaurus pronuspinax". Historical Biology: An International Journal of Paleobiology: 1–21. doi:10.1080/08912963.2025.2472157.
  94. ^ Lerzo, L. N.; Gallina, P. A. (2025). "The extremely thin ilium of the sauropod dinosaur Cathartesaura anaerobica Gallina and Apesteguía 2005 (Sauropoda, Diplodocoidea) with comments on the pneumatization of the rebbachisaurid hip". Historical Biology: An International Journal of Paleobiology: 1–6. doi:10.1080/08912963.2025.2482168.
  95. ^ Shan, B. (2025). "The re-description of Liaoningotitan sinensis Zhou et al., 2018". PeerJ. 13. e19154. doi:10.7717/peerj.19154. PMC 11908444. PMID 40093404.
  96. ^ Sanguino, F.; de Celis, A.; de la Horra, R.; Fernández Fernández, E.; Fernández Martínez, J.; Marcos-Fernández, F.; Pérez-García, A.; Ortega, F. (2025). "A unique association of fusioolithid dinosaur eggs from the Upper Cretaceous of Spain (Poyos, Central System)". Cretaceous Research. 106122. doi:10.1016/j.cretres.2025.106122.
  97. ^ Lacerda, L.; Bandeira, K. L. N.; Navarro, B. A.; Bertolossi, M. L. P.; Gallo, V.; Silva, R. C.; Campos, D. A.; Kellner, A. W. A. (2025). "New lithostrotian specimens (Neosauropoda: Titanosauria) from the Mato Grosso State (Western Brazil) and comments about tail injuries in sauropod dinosaurs". Journal of South American Earth Sciences. 153. 105336. doi:10.1016/j.jsames.2024.105336.
  98. ^ Fernández, M. E.; Windholz, G. J.; Zurriaguz, V. L. (2025). "Palaeohistological characterisation of the caudal pneumaticity of Rocasaurus muniozi (Sauropoda: Titanosauria)". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2025.2481526.
  99. ^ Zurriaguz, V.; Martinelli, A.; Citton, P.; Kaluza, J.; Cerda, I. (2025). "The atlas-axis complex in the titanosaur Neuquensaurus australis (Dinosauria: Sauropoda)". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2025.2486387.
  100. ^ Romilio, A.; Park, R.; Nichols, W.; Jackson, O. (2025). "Dinosaur footprints from the Lower Jurassic (Hettangian–Sinemurian) Precipice Sandstone of the Callide Basin, Queensland, Australia". Historical Biology: An International Journal of Paleobiology: 1–12. doi:10.1080/08912963.2025.2472153.
  101. ^ Barrett, P. M.; Maidment, S. C. R. (2025). "A Review of Nanosaurus agilis Marsh and Other Small-Bodied Morrison Formation "Ornithopods"". Bulletin of the Peabody Museum of Natural History. 66 (1): 25–50. doi:10.3374/014.066.0102.
  102. ^ Rivera-Sylva, H. E.; Aguillón-Martínez, M. C.; Guzmán-Gutiérrez, J. R.; Flores-Ventura, J. (2025). "Ankylosaurians from Coahuila, Mexico". Paleontología Mexicana. 14 (1): 13–27. doi:10.22201/igl.05437652e.2025.14.1.389.
  103. ^ Álvarez Nogueira, Rodrigo; Agnolín, Federico L.; Rozadilla, Sebastián; Aranciaga-Rolando, Mauro; Novas, Fernando E. (2025-02-25). "Ankylosaurian remains from a new Campanian–Maastrichtian locality in Northern Patagonia, Argentina". Alcheringa: An Australasian Journal of Palaeontology: 1–10. doi:10.1080/03115518.2025.2467462. ISSN 0311-5518.
  104. ^ Arbour, V. M.; Lockley, M. G.; Drysdale, E.; Rule, R.; Helm, C. W. (2025). "A new thyreophoran ichnotaxon from British Columbia, Canada confirms the presence of ankylosaurid dinosaurs in the mid Cretaceous of North America". Journal of Vertebrate Paleontology. e2451319. doi:10.1080/02724634.2025.2451319.
  105. ^ Maidment, Susannah; Ouarhache, Driss; Butler, Richard J; Boumir, Khadija; Oussou, Ahmed; Ech-charay, Kawtar; El Khanchoufi, Abdessalam; Barrett, Paul M (2025-03-12). "The world's oldest cerapodan ornithischian dinosaur from the Middle Jurassic of Morocco". Royal Society Open Science. 12 (3). doi:10.1098/rsos.241624. ISSN 2054-5703. PMC 11896692. PMID 40078925.
  106. ^ Panciroli, Elsa; Funston, Gregory F.; Maidment, Susannah C. R.; Butler, Richard J.; Benson, Roger B. J.; Crawford, Brett L.; Fair, Matt; Fraser, Nicholas C.; Walsh, Stig (2025-03-06). "The first and most complete dinosaur skeleton from the Middle Jurassic of Scotland". Earth and Environmental Science Transactions of the Royal Society of Edinburgh: 1–12. doi:10.1017/S1755691024000148. ISSN 1755-6910.
  107. ^ Ibiricu, L. M.; Cerda, I. A.; Caglianone, J. L.; Cardozo, N. V.; Alvarez, B. N.; Cavasin, S. A.; Casal, G. A. (2025). "Basal ornithopods from the south-central Chubut, central Patagonia: evolutionary, paleohistological, and paleoenvironmental considerations". Publicación Electrónica de la Asociación Paleontológica Argentina (in Spanish). 25 (1): 31–48. doi:10.5710/PEAPA.15.11.2024.521.
  108. ^ Maíllo, J.; Hidalgo-Sanz, J.; Gasca, J. M.; Canudo, J. I.; Moreno-Azanza, M. (2025). "Intraskeletal histovariability and skeletochronology in an ornithopod dinosaur from the Maestrazgo Basin (Teruel, Spain)". Journal of Anatomy. doi:10.1111/joa.14225. PMID 39876055.
  109. ^ Bertozzo, F.; Kecheng, N.; Vallée Gillette, N.; Godefroit, P. (2025). "Anatomical description and digital reconstruction of the skull of Jeholosaurus shangyuanensis (Dinosauria, Ornithopoda) from China". PLOS ONE. 20 (1). e0312519. doi:10.1371/journal.pone.0312519. PMC 11760024. PMID 39854443.
  110. ^ Guillermo-Ochoa, A. A.; Zevallos-Valdivia, L. M.; Castro-Eguiluz, C.; Garcia-Flores, V.; Martinez, J.-N.; Silupú-Cárdenas, O. A.; Sánchez-Alva, C. I.; Epiquien-Llaja, J. L.; Pintado-Abarca, T. P.; Delgado-Quiroz, L. M.; Rodríguez-de la Rosa, R. A. (2025). "An ornithopod trackway from the Albian-Turonian Arcurquina Formation, Arequipa, Peru, and its paleoecological implications". Paleontología Mexicana. 14 (1): 1–11. doi:10.22201/igl.05437652e.2025.14.1.388.
  111. ^ Devereaux, O.; Herne, M. C.; Campione, N. E.; Bell, P. R. (2025). "Paleoneurology of the iguanodontian Fostoria dhimbangunmal from the mid-Cretaceous of Australia". Journal of Paleontology: 1–9. doi:10.1017/jpa.2024.38.
  112. ^ Rotatori, F. M.; Escaso, F.; Camilo, B.; Bertozzo, F.; Malafaia, E.; Mateus, O.; Mocho, P.; Ortega, F.; Moreno-Azanza, M. (2025). "Evidence of large-sized ankylopollexian dinosaurs (Ornithischia: Iguanodontia) in the Upper Jurassic of Portugal". Journal of Systematic Palaeontology. 23 (1). 2470789. doi:10.1080/14772019.2025.2470789.
  113. ^ Ebner, A. J.; Csiki-Sava, Z.; Treiber, T.; Totoianu, R.; Augustin, F. J. (2025). "First hadrosauroid record from Petreşti-Arini (Transylvanian Basin, Romania; Upper Cretaceous) and its implications for the evolution of the Hațeg Island vertebrate faunas". Palaeoworld. doi:10.1016/j.palwor.2025.200937.
  114. ^ Wang, D.; Xing, L.; Mallon, J. C.; Miyashita, T.; Liang, Z.; Zhang, X.; Ren, Z.; Liang, Z.; Xian, M. (2025). "First occurrence of the duck-billed dinosaur tribe Lambeosaurini (Hadrosauridae: Lambeosaurinae) in South China". Historical Biology: An International Journal of Paleobiology: 1–13. doi:10.1080/08912963.2025.2454652.
  115. ^ Wroblewski, A. F.-J. (2025). "Southernmost record of the pachycephalosaurine Stygimoloch spinifer and palaeobiogeography of latest Cretaceous North American dinosaurs". Lethaia. 57 (4): 1–10. doi:10.18261/let.57.4.7.
  116. ^ Mallon, J.; Roloson, M.; Bamforth, E.; Scannella, J. B.; Ryan, M. J. (2025). "The Canadian fossil record supports anagenesis in Triceratops (Ornithischia, Ceratopsia)". Canadian Journal of Earth Sciences. doi:10.1139/cjes-2024-0170.
  117. ^ Enriquez, N. J.; Campione, N. E.; Hendrickx, C.; Bell, P. R. (2025). "Epidermal scale growth, allometry and function in non-avian dinosaurs and extant reptiles". Journal of Anatomy. doi:10.1111/joa.14247. PMID 40102911.
  118. ^ Pavia, M.; Louchart, A.; Govender, R.; Delfino, M. (2025). "A new species of swift (Aves, Apodidae) from the Early Pliocene of Langebaanweg, South Africa". PalZ. doi:10.1007/s12542-024-00711-y.
  119. ^ a b De Pietri, V. L.; Scofield, R. P.; Hand, S. J.; Archer, M.; Tennyson, A. J. D.; Worthy, T. H. (2025). "Early Miocene gull-like birds (Charadriiformes: Laridae) from New Zealand". Geobios. doi:10.1016/j.geobios.2024.08.021.
  120. ^ Chen, Runsheng; Wang, Min; Dong, Liping; Zhou, Guowu; Xu, Xing; Deng, Ke; Xu, Liming; Zhang, Chi; Wang, Linchang; Du, Honggang; Lin, Ganmin; Lin, Min; Zhou, Zhonghe (2025-02-13). "Earliest short-tailed bird from the Late Jurassic of China". Nature. 638 (8050): 441–448. doi:10.1038/s41586-024-08410-z. ISSN 0028-0836. PMID 39939791.
  121. ^ Bocheński, Z. M.; Happ, J.; Salwa, G.; Tomek, T. (2025). "The first fossil bird from the Miocene swamps of Gračanica, Bosnia and Herzegovina: A novel and very unique duck". Palaeontologia Electronica. 28 (1). 28.1.a14. doi:10.26879/1512.
  122. ^ a b c Agnolín, F. L.; Álvarez Herrera, G.; Rozadilla, S.; Contreras, V. (2025). "First late Miocene bird assemblage from central Argentina, with the description of new taxa". Historical Biology: An International Journal of Paleobiology: 1–17. doi:10.1080/08912963.2025.2475538.
  123. ^ O'Connor, Jingmai K.; Atterholt, Jessie; Clark, Alexander D.; Zhou, Linqi; Peng, Cuo; Zhang, Xiaoqin; You, Hailu (2025-01-17). "A new enantiornithine (Aves: Ornithothoraces) from the Lower Cretaceous Xiagou Formation with unusually short pubes". Geobios. doi:10.1016/j.geobios.2024.11.003. ISSN 0016-6995.
  124. ^ a b Mayr, G.; Kitchener, A. C. (2025). "The Lithornithiformes (Aves) from the early Eocene London Clay of Walton-on-the-Naze (Essex, UK)". Papers in Palaeontology. 11 (1). e1611. doi:10.1002/spp2.1611.
  125. ^ Wang, Xuri; Cau, Andrea; Wang, Yinuo; Kundrát, Martin; Zhang, Guili; Liu, Yichuan; Chiappe, Luis M. (February 2025). "A new gansuid bird (Avialae, Euornithes) from the Lower Cretaceous (Aptian) Jiufotang Formation of Jianchang, western Liaoning, China". Cretaceous Research. 166: 106014. doi:10.1016/j.cretres.2024.106014. ISSN 0195-6671.
  126. ^ O'Connor, J. K. (2025). "Insights into the early evolution of modern avian physiology from fossilized soft tissues from the Mesozoic". Philosophical Transactions of the Royal Society B: Biological Sciences. 380 (1920). 20230426. doi:10.1098/rstb.2023.0426. PMC 11864835. PMID 40010392.
  127. ^ Wilken, A. T.; Sellers, K. C.; Cost, I. N.; David, J.; Middleton, K. M.; Witmer, L. M.; Holliday, C. M. (2025). "Avian cranial kinesis is the result of increased encephalization during the origin of birds". Proceedings of the National Academy of Sciences of the United States of America. 122 (13). e2411138122. doi:10.1073/pnas.2411138122. PMC 12002250. PMID 40096621.
  128. ^ Foth, C.; van de Kamp, T.; Tischlinger, H.; Kantelis, T.; Carney, R. M.; Zuber, M.; Hamann, E.; Wallaard, J. J. W.; Lenz, N.; Rauhut, O. W. M.; Frey, E. (2025). "A new Archaeopteryx from the lower Tithonian Mörnsheim Formation at Mühlheim (Late Jurassic)". Fossil Record. 28 (1): 17–43. doi:10.3897/fr.28.e131671.
  129. ^ Castro-Terol, J.; Pérez-Ramos, A.; O'Connor, J. K.; Sanz, J. L.; Serrano, F. J. (2025). "Micro-CT reconstruction reveals new information about the phylogenetic position and locomotion of the Early Cretaceous bird Iberomesornis romerali". Geobios. doi:10.1016/j.geobios.2024.11.006.
  130. ^ Atterholt, J.; O'Connor, J. K.; You, H. (2025). "Osteohistology of Enantiornithine Birds from the Lower Cretaceous Xiagou Formation". Geobios. doi:10.1016/j.geobios.2024.08.020.
  131. ^ Lockley, M. G.; Plint, A. G.; Helm, C. W. (2025). "Heron-like tracks from the Dunvegan Formation (Cenomanian), British Columbia: evidence for convergence in avian foot morphology". Historical Biology: An International Journal of Paleobiology: 1–14. doi:10.1080/08912963.2025.2477201.
  132. ^ Boast, A. P.; Wood, J. R.; Cooper, J.; Bolstridge, N.; Perry, G. L. W.; Wilmshurst, J. M. (2025). "DNA and spores from coprolites reveal that colourful truffle-like fungi endemic to New Zealand were consumed by extinct moa (Dinornithiformes)". Biology Letters. 21 (1). 20240440. doi:10.1098/rsbl.2024.0440. PMC 11732427. PMID 39809323.
  133. ^ Thomas, D. B.; Fleury, K.; Paterson, M.; Hayward, B. W.; Erickson, R.-L. (2025). "A short trackway of tridactyl fossil footprints discovered in the Kaipara region of the North Island of New Zealand". New Zealand Journal of Geology and Geophysics. doi:10.1080/00288306.2025.2472831.
  134. ^ Torres, C.; Clarke, J. A.; Groenke, J. R.; Lamanna, M. C.; MacPhee, R. D. E.; Musser, G. M.; Roberts, E. M.; O'Connor, P. M. (2025). "Cretaceous Antarctic bird skull elucidates early avian ecological diversity". Nature. 638 (8049): 146–151. doi:10.1038/s41586-024-08390-0. PMID 39910387.
  135. ^ Zonneveld, J.-P.; Naone, S.; Britt, B. (2025). "Waterbird foraging traces from the early Eocene Green River Formation, Utah". Journal of Paleontology: 1–20. doi:10.1017/jpa.2023.49.
  136. ^ Parish, J. C. (2025). "The phylogenetic relationships of the Dodo (Raphus cucullatus) and the Solitaire (Pezophaps solitaria) within Columbidae (Aves: Columbiformes), including other large extinct taxa, based on morphological data". Historical Biology: An International Journal of Paleobiology: 1–16. doi:10.1080/08912963.2025.2473546.
  137. ^ Cooper, J. H.; Collar, N. J.; Bouzouggar, A.; Barton, N.; Humphrey, L. (2025). "Late Pleistocene Great Bustards Otis tarda from the Maghreb, eastern Morocco". Ibis. doi:10.1111/ibi.13404.
  138. ^ Mayr, G.; Goedert, J. L.; Richter, A. (2025). "Nearly complete late Eocene skull from the North Pacific elucidates the cranial morphology and affinities of the penguin-like Plotopteridae". The Science of Nature. 112 (2). 27. doi:10.1007/s00114-025-01977-1. PMC 11926016.
  139. ^ Farina, M. E.; Krapovickas, V.; Marsicano, C. A. (2025). "A new avian footprint taxon (Gragliavipes gavenskii, Ignotornidae) from the Cenozoic of South America and a reappraisal of avian ichnofamilies from the Cretaceous and Cenozoic". Historical Biology: An International Journal of Paleobiology: 1–13. doi:10.1080/08912963.2025.2481654.
  140. ^ Rossi, V.; Slater, T.; Unitt, R.; Carazo del Hoyo, B.; Terranova, E.; Gaeta, M.; McNamara, M. E.; Sardella, R.; Iurino, D. A. (2025). "Fossil feathers from the Colli Albani volcanic complex (Late Pleistocene, Central Italy) preserved in zeolites". Geology. doi:10.1130/G52971.1.
  141. ^ Garcia Marsà, J. A.; Agnolín, F. L.; Angst, D.; Buffetaut, E. (2025). "Paleohistological Analysis of "Terror Birds" (Phorusrhacidae, Brontornithidae): Paleobiological Inferences". Diversity. 17 (3). 153. doi:10.3390/d17030153.
  142. ^ Agnolin, F. L.; Chafrat, P.; Álvarez-Herrera, G. P. (2025). "New specimens of Patagorhacos terrificus Agnolín and Chafrat, 2015 (Aves) shed light on the phylogeny and evolution of the Phorusrhacidae". Historical Biology: An International Journal of Paleobiology: 1–13. doi:10.1080/08912963.2025.2458127.
  143. ^ Horváth, I. (2025). "New records of fossil bird bones from the Neogene in Hungary". Zootaxa. 5627 (2): 327–342. doi:10.11646/zootaxa.5627.2.5.
  144. ^ Marqueta, M.; Núñez-Lahuerta, C.; Huguet, R.; Vergès, J. M. (2025). "The end of the Pleistocene in south-western Europe: the avian assemblages from Heinrich event 3 to the Last Glacial Maximum in the Prades mountains (north-eastern Iberian Peninsula)". Geobios. doi:10.1016/j.geobios.2024.11.004.
  145. ^ Syverson, V. J. P.; Prothero, D. (2025). "Reevaluating climate change responses in Rancho La Brea birds and mammals: new dates and new data". Paleobiology: 1–14. doi:10.1017/pab.2024.37.
  146. ^ Hering, J.; Hering, H.; Winter, M.; Kröpelin, S.; Barthel, P. H.; Neumann, C. (2025). "First subfossil Holocene avian breeding burrows in volcanic rocks of the Tibesti Mountains (Chad)". Journal of Ornithology. doi:10.1007/s10336-025-02268-2.
  147. ^ Cheng, X.; Jiang, S.; Bantim, R. A. M.; Sayão, J. M.; Saraiva, A. Á. F.; Meng, X.; Kellner, A. W. A.; Wang, X. (2025). "A new species of Darwinopterus (Wukongopteridae, Pterosauria) from western Liaoning provides some new information on the ontogeny of this clade". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1). e20240707. doi:10.1590/0001-3765202520240707. PMID 40053015.
  148. ^ Manitkoon, S.; Pêgas, R. V.; Nonsrirach, T.; Warapeang, P.; Lauprasert, K.; Deesri, U.; Tumpeesuwan, S.; Wongko, K.; Zhou, X. (2025). "First gnathosaurine (Pterosauria, Pterodactyloidea) from the Early Cretaceous of eastern Thailand". Cretaceous Research. 106135. doi:10.1016/j.cretres.2025.106135.
  149. ^ Thomas, H. N.; Hone, D. W. E.; Gomes, T.; Peterson, J. E. (2025). "Infernodrakon hastacollis gen. et sp. nov., a new azhdarchid pterosaur from the Hell Creek Formation of Montana, and the pterosaur diversity of Maastrichtian North America". Journal of Vertebrate Paleontology. e2442476. doi:10.1080/02724634.2024.2442476.
  150. ^ Zhou, X.; Ikegami, N.; Pêgas, R. V.; Yoshinaga, T.; Sato, T.; Mukunoki, T.; Otani, J.; Kobayashi, Y. (2024). "Reassessment of an azhdarchid pterosaur specimen from the Mifune Group, Upper Cretaceous of Japan". Cretaceous Research. 167. 106046. doi:10.1016/j.cretres.2024.106046.
  151. ^ Averianov, A. O. (2025). "A new ornithocheiran pterosaur from the Upper Cretaceous (Cenomanian) of Saratov, Russia". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1). e20241063. doi:10.1590/0001-3765202520241063. PMID 40298668.
  152. ^ Araújo, E. V.; Cubo, J.; Sena, M. V. A.; Bantim, R. A. M.; Weinschütz, L. C.; Kellner, A. W. A.; Sayão, J. M. (2025). "Wing bone laminarity in pterosaurs: insights into torsional adaptations for flight evolution". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1). e20240540. doi:10.1590/0001-3765202520240540. PMID 40053014.
  153. ^ Buchmann, R.; Rodrigues, T. (2025). "Flesh and bone: The musculature and cervical movements of pterosaurs". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1). e20240478. doi:10.1590/0001-3765202520240478. PMID 40172442.
  154. ^ Weems, R. E.; Bachman, J. M. (2023). "Pterosaur tracks from the Lower Cretaceous Patuxent Formation of Virginia". The Mosasaur. The Journal of the Delaware Valley Paleontological Society. 13: 71–77. doi:10.5281/zenodo.8264685.
  155. ^ McDavid, S. N.; Thomas, H. N. (2025). "The putative pterosaur tracks at Gunston Hall (Potomac Group, Cretaceous of Virginia) are examples of erosion". The Mosasaur. The Journal of the Delaware Valley Paleontological Society. 14: 13–21. doi:10.5281/zenodo.14991720.
  156. ^ Hone, David W. E.; McDavid, Skye N. (2025-01-02). "A giant specimen of Rhamphorhynchus muensteri and comments on the ontogeny of rhamphorhynchines". PeerJ. 13: e18587. doi:10.7717/peerj.18587. ISSN 2167-8359. PMC 11700493. PMID 39763697.
  157. ^ Jagielska, N.; O'Sullivan, M.; Butler, I. B.; Challands, T. J.; Funston, G. F.; Ross, D.; Penny, A.; Brusatte, S. L. (2025). "Osteology and functional morphology of a transitional pterosaur Dearc sgiathanach from the Middle Jurassic (Bathonian) of Scotland". BMC Ecology and Evolution. 25 (1). 9. doi:10.1186/s12862-024-02337-9. PMC 11761736. PMID 39849380.
  158. ^ Smyth, R. S. H.; Breithaupt, B. H.; Butler, R. J.; Falkingham, P. L.; Unwin, D. M. (2025). "Identifying pterosaur trackmakers provides critical insights into mid-Mesozoic ground invasion". Current Biology. doi:10.1016/j.cub.2025.04.017.
  159. ^ Averianov, A. O.; Lopatin, A. V. (2025). "Pterosaur Humerus from the Jurassic Deposits of Volga Region". Doklady Earth Sciences. 520 (1). 9. doi:10.1134/S1028334X24603973.
  160. ^ Smith, R. E.; Martill, D. M. (2025). "A ctenochasmatid pterosaur from the Portland Limestone Formation (Late Jurassic, Tithonian) of southern England". Proceedings of the Geologists' Association. doi:10.1016/j.pgeola.2025.101100.
  161. ^ Bennett, S. C. (2025). "A review of the pterosaur Gnathosaurus subulatus from the Tithonian Solnhofen Lithographic Limestones of Germany: taxonomy and ontogeny". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 314: 93–114. doi:10.1127/njgpa/2025/1245.
  162. ^ Zhou, C.-F.; Fan, F. (2025). "Tooth replacement of the filter-feeding pterosaur Forfexopterus and its implications for ecological adaptation". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1). e20240673. doi:10.1590/0001-3765202520240673. PMID 39879506.
  163. ^ Ezcurra, M. D.; Fernandes, A. E.; Roig, M.; von Baczko, M. B. (2025). "A revision of the pterodactyloid pterosaur Herbstosaurus pigmaeus Casamiquela, 1975 from the Late Jurassic of Argentina". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1). e20241130. doi:10.1590/0001-3765202520241130. PMID 40008776.
  164. ^ Song, J.; Zhong, Y.; Jiang, S.; Wang, X. (2025). "The first ornithocheiromorph humerus from Wuerho (Urho), China, with a new isotopic age of the Tugulu Group". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1). e20240557. doi:10.1590/0001-3765202520240557. PMID 39879505.
  165. ^ Temp Müller, Rodrigo (January 2025). "A new "silesaurid" from the oldest dinosauromorph-bearing beds of South America provides insights into the early evolution of bird-line archosaurs". Gondwana Research. 137: 13–28. doi:10.1016/j.gr.2024.09.007.
  166. ^ Garcia, M. S.; Müller, R. T. (2025). "Triassic pterosaur precursors of Brazil: catalog, evolutionary context, and a new hypothesis for phylogenetic relationships of Pterosauromorpha". Anais da Academia Brasileira de Ciências. 97 (Suppl. 1). e20240844. doi:10.1590/0001-3765202520240844. PMID 40008775.
  167. ^ Burton, M. G.; Benito, J.; Mellor, K.; Smith, E.; Martin-Silverstone, E.; O'Connor, P.; Field, D. J. (2025). "The influence of soft tissue volume on estimates of skeletal pneumaticity: implications for fossil archosaurs". Philosophical Transactions of the Royal Society B: Biological Sciences. 380 (1920). 20230428. doi:10.1098/rstb.2023.0428. PMC 11864828. PMID 40010389.
  168. ^ Xu, X.; Barrett, P. M. (2025). "The origin and early evolution of feathers: implications, uncertainties and future prospects". Biology Letters. 21 (2). 20240517. doi:10.1098/rsbl.2024.0517. PMC 11837858. PMID 39969251.
  169. ^ Hedge, J.; Tucker, R. T.; Makovicky, P. J.; Zanno, L. E. (2025). "Fossil eggshell diversity of the Mussentuchit Member, Cedar Mountain Formation, Utah". PLOS ONE. 20 (2). e0314689. doi:10.1371/journal.pone.0314689. PMC 11864547. PMID 40009577.
  170. ^ Brown, C. M.; Bell, P. R.; Owers, H.; Pickles, B. J. (2025). "A juvenile pterosaur vertebra with putative crocodilian bite from the Campanian of Alberta, Canada" (PDF). Journal of Paleontology: 1–10. doi:10.1017/jpa.2024.12.